

A New Approach to Evaluation of Long-Term Performance of Plastic Pipe

Ben Jar and Donna Tan

Department of Mechanical Engineering
University of Alberta, Canada
(ben.jar@ualberta.ca; ntan2@ualberta.ca)

The challenges:

An unusual ductile-brittle (DB) transition

Y Zhao, B-H Choi, A Chudnovsky, Inter. J. Fatigue 51 (2013), 26-35

Some results based on ASTM D2837 and ISO9080 (long-term hydrostatic strength of plastic pipe)

Nature of long-term creep tests:

Hydrostatic test results - under constant loading

$$Log(\sigma) = a \times Log(t) + b$$

Uncertainty in time and stress: $\Delta t = [t^{(1-a)}/(10^b a)] \Delta \sigma$

For t = 50 yrs:

Time uncertainty in terms of stress uncertainty: Δt (yr) $\approx -230 \Delta \sigma$ (MPa)

Can we predict long-term performance of plastic pipe?

Outline

- Our idea for the cause of the DB transition (mechanism)
- Application of the idea to creep test results
- · A new test method
- Evaluation of the new test method
- Recent research progress and results
- Conclusions
- Future work
- Acknowledgement

Idea for the cause of the DB transition

Different mechanisms for brittle and ductile fracture (Low stress) (High stress)

Fracture: a local phenomenon after deformation

Brittle fracture at a low stress –
 (In the amorphous only)

 Ductile fracture at a high stress (Including the crystalline phase)

- Above the critical stress level, crystalline phase is involved in the deformation process, resulting in ductile fracture
- To determine the lowest stress level that allows the crystalline phase to be involved in the plastic deformation process

Detecting the DB transition:

(based on the three-coefficient method in ASTM D2837)

$$\log(t) = A + \frac{B}{T} + \frac{C}{T} \log(S)$$

$$S: \text{ creep failure time}$$

$$S: \text{ creep stress}$$

$$T: \text{ Temperature (K)}$$

$$\log(S) = \frac{T}{C} \log(t) - \frac{A}{C} \left(T + \frac{B}{A} \right)$$

$$a' = \frac{T}{C}$$

$$b' = -\frac{A}{C} \left(T + \frac{B}{A} \right) = -A \ a' - \frac{B}{C}$$

Creep tests at different temperatures

Short-term creep test (HDPE plate with ρ = 0.941 g/cm³)

Summary of short-term creep tests (23 to 84°C)

- Each took 2 to 60
 hrs to complete,
 except one at 76°C
 and one at 83.5°C
- All failed though neck formation (ductile)

Time-temperature superposition

From ASTM D2837:
$$\log(S) = \frac{T}{C}\log(t) - \frac{A}{C}\left(T + \frac{B}{A}\right)$$

Our version:
$$\log(S) = \left(\frac{T}{C} + D\right) \log(t) - \frac{A}{C} \left(T + \frac{B}{A}\right)$$

For the PE plaque

T < 342 K:
$$a'$$
: $\frac{T}{c} + D = 0.00109 \text{ T} - 0.38538$ \Longrightarrow $C = 917.4$ $D = -0.38538$ b' : $-\frac{A}{c} \left(T + \frac{B}{A}\right) = -0.0074 \text{ T} + 3.3842$ \Longrightarrow $A = 6.789$ $B = -3104.7$ $C = -27100$ $D = 0$ $C = -27100$ $D = 0$ D

T < 342 K:

$$\log(S) = (0.00109 \, T - 0.38538) \log(t) + 0.0074 \times (457.32 - T)$$

T > 342 K:

$$\log(S) = (-3.69 \times 10^{-5} \, \text{T}) \log(t) + 0.0074 \times (457.32 - \text{T})$$

At transition, T = 342 K

Critical stress at the DB transition: log(S) = a' log(t) + b'

Critical stress of the transition, at 69°C (342K), S = 6.82 MPa

$$\log(S) = (0.00109 \, T - 0.38538) \log(t) + 0.0074 \times (457.32 - T)$$

@23°C, with S = 6.82 MPa, failure time t = 546,645 hrs (62.4yrs)

New test method to determine critical stress for DB transition

Change of the relaxation behavior —— Critical point for transition Multi-relaxation test on one specimen

Sample of analysis on data from the stress relaxation

 K. Hong, A. Rastogi, G. Strobl. Macromolecules 37 (2004) 10165-73

 $\tau_{\rm r}$: fixed at 16,000 s adjusting σ_0 and $\sigma_{\rm r}(0)$

Critical stress for DB transition (with $\tau_r = 16,000$ seconds)

Critical stress from creep tests = 6.82 MPa

Evidence on the crystalline phase involved in the deformation

Wide-angle X-ray scattering (WAXS)

Multiple relaxation test

Critical

stroke

X-ray

Apply the concept to 2-inch PE pipes

Residual hoop stress: based on one-slit-ring method

J. Poduška, P. Hutař, J. Kučera, J. S. Andreas Frank, G. Pinter, and L. Náhlík. *Polym. Test.*, **54**, 288 (2016)

Material	Symbol	Density (g/cc)	Resin yield strength (MPa)
#1 Unimodal MDPE	PE2708-M-U1	0.940	19.3
#2 Unimodal HDPE	PE3408-H-U	0.944*	22.8 [*]
#3 Bimodal MDPE	PE2708-M-B	0.940	19.3
#4 Bimodal HDPE	PE4710-H-B1	0.949	24.8
#5 Unimodal MDPE	PE2708-M-U2	0.940	19.3
#6 Bimodal HDPE	PE4710-H-B2	0.949	>24.1

Multi-relaxation tests

Test results – 2-in pipe

			4001
Pipe code	Critical area strain	Quasi-static stress at critical point (MPa)	Hydrostatic Design 'Basis at 23 °C (MPa)
PE2708-M-U1	0.05	8.18	8.62
PE3408-H-U	0.09	10.25	11.03
PE2708-M-B	0.04	7.25	8.62
PE4710-H-B1	0.07	10.86	11.03
PE2708-M-U2	0.04	7.25	8.62
PE4710-H-B2	0.08	9.88	11.03

Conclusions

 Proposed and verified the transition for deformation mechanism in PE pipe when subjected to in-service loading conditions

 Developed a short-term, multi-relaxation test method to determine critical stress for the deformation transition and predict time for its

Future Work

- To apply the research approach to PE pipe, taking into account residual hoop stress in the evaluation for their long-term performance
- To explore possibility of applying this test approach to evaluation of long-term performance of other plastics and FRP, and their load-carrying capability

Acknowledgement

Uof A

- CSC scholarship for Na Tan's Ph.D. study
- Imperial Oil (University Research Awards program) for funding and supply of PE plaques
- Natural Sciences and Engineering Research Council of Canada (NSERC) for funding
- Machine shop staff for specimen preparation
- Ernest Lever and Tony Kosari from Gas Technology Institute Chicago (GTI) for supply of PE pipes
- Wajdy Ateerah from Polytubes for supply of PE pipes

PE4710-H-B-1in

