Practical Aspects of Large Diameter HDPE Pipe Production

Steve Sandstrum
Borealis
April 16-17, 2019
Large OD HDPE Pipe: An Overview

• The Market for Plastic Pipe
 • Global Market
 • North American Market

• The Evolution of Large OD HDPE Pipe

• Practical Aspects of Large Diameter HDPE Pipe
 • Raw materials
 • Material handling
 • Production equipment
 • QA procedures
 • Shipping and handling
 • Joining

• Questions & Answers

• Concluding Remarks
Global Demand for Plastic Pipe
Global Demand for Plastic Pipe

• Industry sources project a healthy demand for plastic pipe through 2023
 • Freedonia, AMI, PPI, Private client studies

• Plastic pipe demand (all plastics) is projected to rise at a rate of 6.5-6.7% per year on a global basis.

• Global construction is the key driver for continuing growth in demand for plastic pipe

• PVC is still expected to remain the dominant plastic pipe material with an annual growth rate of approximately 6.0-6.3% per year.

• HDPE (all types) is expected to gain market share from PVC with an annualize growth rate of approximately 7.2-7.4% per year.

• Combined, PVC and HDPE hold approximately 90-92% of the overall plastic pipe market on a global basis.
Global Demand for Plastic Pipe

- Key drivers for continued growth in plastics piping
 - Extremely attractive strength-to-weight ratio
 - Chemical/corrosion resistance
 - Ease of installation
 - Long-term durability
 - Joining techniques
 - Cost-effectiveness across various end-uses

- Above average growth rates (> 6.7% per year) expected for newer market entrants
 - Cross-linked polyethylene (PEX)
 - Polypropylene (PP)
 - Polyethylene with raised temperature resistance (PERT)
 - Engineering resins (PVDF, etc)
 - Others
Global Demand for Plastic Pipe

<table>
<thead>
<tr>
<th>Material</th>
<th>2009</th>
<th>2014</th>
<th>2019</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC (metric ktons)</td>
<td>13060</td>
<td>17620</td>
<td>23950</td>
<td>31450</td>
</tr>
<tr>
<td>PVC (million pounds)</td>
<td>28732</td>
<td>38764</td>
<td>52690</td>
<td>69190</td>
</tr>
<tr>
<td>HDPE (metric ktons)</td>
<td>7070</td>
<td>10920</td>
<td>15550</td>
<td>21190</td>
</tr>
<tr>
<td>HDPE (million pounds)</td>
<td>15554</td>
<td>24024</td>
<td>34210</td>
<td>46618</td>
</tr>
<tr>
<td>Other (metric ktons)</td>
<td>1670</td>
<td>2320</td>
<td>3250</td>
<td>4360</td>
</tr>
<tr>
<td>Other (million pounds)</td>
<td>3674</td>
<td>5104</td>
<td>7150</td>
<td>9592</td>
</tr>
<tr>
<td>Total Plastic pipe (metric ktons)</td>
<td>21800</td>
<td>30860</td>
<td>42750</td>
<td>57000</td>
</tr>
<tr>
<td>Total Plastic pipe (million pounds)</td>
<td>47960</td>
<td>67892</td>
<td>94050</td>
<td>125400</td>
</tr>
<tr>
<td>PVC % of total</td>
<td>59.9</td>
<td>57.1</td>
<td>56.0</td>
<td>55.2</td>
</tr>
<tr>
<td>HDPE % of total</td>
<td>32.4</td>
<td>35.4</td>
<td>36.4</td>
<td>37.2</td>
</tr>
<tr>
<td>Other % of total</td>
<td>7.7</td>
<td>7.5</td>
<td>7.6</td>
<td>7.6</td>
</tr>
</tbody>
</table>

Source: Fredonia Group
North American for Plastic Pipe

North American Plastic Pipe Demand by Resin

<table>
<thead>
<tr>
<th>Material</th>
<th>2009</th>
<th>2014</th>
<th>2019</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC (metric ktons)</td>
<td>2713</td>
<td>2887</td>
<td>3969</td>
<td>4935</td>
</tr>
<tr>
<td>PVC (million pounds)</td>
<td>5968.6</td>
<td>6351.4</td>
<td>8731.8</td>
<td>10857</td>
</tr>
<tr>
<td>HDPE (metric ktons)</td>
<td>1176</td>
<td>1666</td>
<td>2369</td>
<td>2936</td>
</tr>
<tr>
<td>HDPE (million pounds)</td>
<td>2587.2</td>
<td>3665.2</td>
<td>5211.8</td>
<td>6459.2</td>
</tr>
<tr>
<td>Other (metric ktons)</td>
<td>236</td>
<td>277</td>
<td>352</td>
<td>434</td>
</tr>
<tr>
<td>Other (million pounds)</td>
<td>519.2</td>
<td>609.4</td>
<td>774.4</td>
<td>954.8</td>
</tr>
<tr>
<td>Total Plastic pipe (metric ktons)</td>
<td>4125</td>
<td>4830</td>
<td>6690</td>
<td>8305</td>
</tr>
<tr>
<td>Total Plastic pipe (million pounds)</td>
<td>9075</td>
<td>10626</td>
<td>14718</td>
<td>18271</td>
</tr>
<tr>
<td>PVC % of total</td>
<td>65.8</td>
<td>59.8</td>
<td>59.3</td>
<td>59.4</td>
</tr>
<tr>
<td>HDPE % of total</td>
<td>28.5</td>
<td>34.5</td>
<td>35.4</td>
<td>35.4</td>
</tr>
<tr>
<td>Other % of total</td>
<td>5.7</td>
<td>5.7</td>
<td>5.3</td>
<td>5.2</td>
</tr>
</tbody>
</table>

- North American market still largely dominated by PVC pipe according to independent sources
- PVC CAGR over 2019-2023 projection period = ~ 4.0%
- PE CAGR over 2019-2023 projection period = ~ 5.3%

Source: Freedonia Group
North American Demand for Plastic Pipe

• Health of North American Market for plastic pipe is borne out by both independent resources and PPI Statistics
 • Fredonia
 • AMI
 • Private client studies

• PPI statistical reports:
 • Offer more accurate insight into HDPE pipe sales within North America
 • Focus in on HDPE pipe grades HDPE pipe shipments going back to 1975
 • Can strip out non-pressure rated corrugated or drainage grades to focus on pressure-rated HDPE grades
North American Demand for HDPE Pipe

PPI Total HDPE Market Projection

Note: Total HDPE market projection includes PEX but does not include non-pressure or corrugated HDPE pipe shipments

Source: PPI Statistics Reports
Growth of HDPE Pipe Market

• Despite some cyclicality, sustained growth and expansion in traditional HDPE pipe end-uses
 • Water service
 • Gas distribution
 • Oil patch
 • Conduit
 • Other

• “Discovery” of the value proposition for large diameter HDPE pipe by engineering community
 • Municipal water transmission
 • Industrial process water
 • Ocean intake/outfall systems
Growth in HDPE Pipe Market

- Key drivers in continuing expansion into larger diameters and heavier walled HDPE
 - Performance capability of HDPE in demanding applications
 - Material advancements
 - PE4710
 - PE100RC
 - Innovation in production technologies
 - Advent of “long-length” production
 - Advancements in fusion joining technologies
 - Fittings design and availability
 - Continuing recognition in standards arena
 - ASTM, AWWA, ISO, ASME, Other

- Large diameter HDPE pipe today
 - ASTM D3035 through 65” IPS
 - ASTM F3123 through 2500 mm
 - ISO 4427 through 2000 mm
 - EN 12201 through 2500 mm
Practical Aspects of Large Diameter HDPE Pipe

• While any of the factors contributing to growth in large diameter HDPE are worthy of extensive discussion

• This discussion will focus on the practical aspects of large diameter production
 • Raw materials
 • Material handling
 • Production equipment
 • QA procedures/practices
 • Shipping and handling
 • Joining
Practical Aspects of Large Diameter HDPE Pipe

• For purposes of discussion:
 • Spiral wound large diameter HDPE pipe has been around for some time
 • Technology is viable and has contributed to global growth in HDPE pipe demand

• Today’s discussion will focus on conventional in-line extrusion of large diameter (> 2000 mm) HDPE pipe
Practical Aspects: Raw Materials

- Selection of feedstock materials is extremely important
 - PE4710
 - PE100/PE100RC

- Melt strength and resin qualification becomes a key component of the planning process

- Example:
 - 2500 mm DR 17
 - Wall = 147.1 mm (5.79”)
 - Weight/ft = 738 lb/ft

- Additional consideration - precompounded feedstock versus in-plant blends of natural and masterbatch
 - Uniformity of carbon black distribution
 - Heat intensification due to blending affecting melt strength
 - Impact on pipe quality and QA requirements
 - Standards compliance
Practical Aspects: Material Handling

Large Diameter PE100/PE4710 Pipe Properties

<table>
<thead>
<tr>
<th>Nominal Diameter</th>
<th>Pipe DR</th>
<th>17</th>
<th>21</th>
<th>26</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mm</td>
<td></td>
<td>wall (mm)</td>
<td>wall (in)</td>
<td>wall (mm)</td>
<td>wall (in)</td>
</tr>
<tr>
<td>2000</td>
<td>17</td>
<td>117.6</td>
<td>4.6</td>
<td>473</td>
<td>95.2</td>
</tr>
<tr>
<td>2500</td>
<td>21</td>
<td>147.1</td>
<td>5.8</td>
<td>738</td>
<td>119.0</td>
</tr>
<tr>
<td>3000</td>
<td>26</td>
<td>176.5</td>
<td>6.9</td>
<td>1062</td>
<td>142.9</td>
</tr>
<tr>
<td>3500</td>
<td>33</td>
<td>205.9</td>
<td>8.1</td>
<td>1446</td>
<td>166.7</td>
</tr>
</tbody>
</table>

Notes:
1) Wall thicknesses shown are based on EN12201 and ISO 4427
2) Pipe weights are approximated based on nominal diameter and pipe wall shown
3) Values shown in red are hypothetical only and not proven based on current commercial practice
Practical Aspects: Material Handling

- Large diameter pipe requires a “lot” of material

- 2500 mm DR 17 example
 - Assume 6 50’ foot joints per day
 - 221,400 pounds per day
 - 9,225 pounds per hour

- On site inventory becomes key to uninterrupted production

- Resin conveyance capacity and reliability can be a factor as well

- Incoming QA of feedstock materials at these volumes is important
Practical Aspects: Production Equipment

- Think “BIG”
- “BIG” pipe requires “BIG” equipment
- Space requirements become a major aspect of planning process
- Single versus multi-extruder configuration
- Highly specialized extrusion equipment
 - Dies
 - Vacuum/Cooling tanks
 - Pullers
 - Cut-off and
- Loads become a major consideration
 - Bridge crane or hoisting capacity
Practical Aspects: Long Length Production
Practical Aspects: QA Procedures/Practices

- QA requirements are largely set by production standards
 - ASTM or ISO or EN
 - Resin qualification
 - Resin inspection
 - Workmanship
 - Diameter
 - Wall thickness
 - Carbon black content
 - Tensile strength
 - Melt index
 - OIT
 - Marking requirements
 - Batch release testing

- At these volumes, on-line process control and production automation become critical
 - Extrusion process parameter monitoring
 - Automated wall monitoring
 - Integrated process control

- Particularly, in long-length production
Practical Aspects: Shipping and Handling

- Think “BIG”

- Large diameter HDPE pipe creates shipping and handling challenges
 - 50’ 2500 DR 17 = 37,000 pounds
 - 1500’ becomes 1.1 million pounds

- On site handling and storage requires some creativity

- Dedicated loads or special permitting for extremely large diameter pipe

- Long length, marine production
Practical Aspects: Shipping and Handling
Practical Aspects: Joining

• Butt fusion has been and continues to be key to the expansion of HDPE pipe demand
 • Time-proven technology
 • Standardized fusion procedure
 • ASTM F2620
 • DVS 2207
 • Joint integrity
 • Flow stream security
 • Job-site efficiency
 • Evolution in technology and productivity
Practical Aspects: Joining

- New set of challenges as we consider large diameter HDPE
 - Pipe fusion
 - Fitting production and joining
 - Job-site planning
 - Think “BIG”
 - Space requirements
 - Load handling

Tecnodue 3130 Fusion Machine

Widos 2600 Fusion Machine
Large Diameter HDPE Pipe: Concluding Remarks

- Larger diameter HDPE pipe production (> 2000 mm OD) poses some unique challenges.

- However, the basic process is the same as smaller diameter. The challenges are scaled up significantly.

- Advancements in resin and production technology have been instrumental in setting the stage.

- Introduction of these larger diameters and heavier walls opens the door for new applications
 - Intake and outfall
 - Industrial process water
 - Hydro-electricity
 - Ocean Clean-up
Questions?
Thank you!

The ideas or concepts documented in this presentation are the sole property of Borealis AG, and are subject to current copyright laws. Unauthorized use, reproduction in whole or in part, as well as transmission or distribution to third parties is not permitted. Borealis AG and its affiliates give no warranty and make no representation as to the accuracy, completeness or fitness for any particular use of the information contained herein. It is the customer’s responsibility to inspect and test specified/purchased materials and determine the technical suitability for a particular use or application.