PA 11 A HIGH PERFORMANCE POLYAMIDE FOR OIL AND GAS PIPING APPLICATIONS

DR P.DANG APRIL 2019

ARKEMA/TPA CERDATO

OUTLINE

* INTRODUCTION

ARKEMA in a snapshot Technical Polymers for Oil & Gas Applications

POLYAMIDE FAMILY

Main features and differences between short and long chain PA's Differences between PA11 and PA12

- LONG TERM AGEING PERFORMANCE FOR SURF APPLICATIONS API17TR2 lifetime model for PA11
- * LONG TERM MECHANICAL PERFORMANCE FOR ONSHORE GAS PIPE Hydrostatic pressure resistance of PA11 pipe vs HDPE
- AGEING AND MECHANICAL INTERACTION : STRESS CRACKING Short chain PA sensitivity to metal salts Slow Crack Growth of PE-RT in hydrocarbon

ARKEMA SNAPSHOT 2018 BASIS

OUR POLYMER PRODUCT RANGE POSITIONING

1

INTRODUCTION : OIL & GAS APPLICATIONS

<u>Onshore</u>: gas pipe, service station pipe, composite pipe PA, PVDF, Steel, HDPE

<u>Offshore</u>: SURF (umbilicals, risers, flowlines) PA, PVDF, Steel, HDPE

- API17J unbonded flexibles :
- API16C choke & kill
- Pressure sheath Anti-wear tape External sheath

Pressure sheath

- API17E umbilicals :
- Thermoplastic liner External sheath

INTRODUCTION : POLYMERS IN FLEXIBLE PIPES

TECHNICAL POSITIONING OF POLYAMIDES

Semi-cristalline polymers obtained by polycondensation
 Higher chain rigidity vs polyethylene thanks to amide groups
 Higher Tg and Tm thanks to hydrogen bonding

ARKEM

DIFFERENCES BETWEEN PA11 AND PA12 : PHYSICAL

DIFFERENCES BETWEEN PA11 AND PA12 : MECHANICAL

ARKEMA

- RILSAN® USER GROUP 1997-2002
 - Informal JIP, theroretical approach+real cases, all Majors O&G, all flexibles manufacturers
 - Publishing of API 17 TR2 document
- Hydrolysis kinetics
 - The Molecular Weight / Corrected Inherent Viscosity decreases with time
 - Temperature effect : the higher T°C / the faster the ageing rate
 - Effect of pH : the more acid / the faster the ageing rate
- End of life criteria : CIV
 - Based on 30 years experience
 - Both Lab studies and Field feed back
 - Proposed model with criterion : CIV 1,2 dl/g
- Mechanical properties
 - Elongation at break

Hydrolysis Ageing of Polyamide 11 – 1. Hydrolysis kinetics in water

B. Jacques, M. Werth, I. Merdas, F. Thominette and J. Verdu

Polymer 2002; **43**,6439-47

STATE OF THE ART ON PA11 AGEING - API 17TR2

 API17TR2 gives guidelines to assess the lifetime of PA11, dedicated criteria CIV = 1.2 dl/g compared to 1,05 dynamic limit (safety)

CORRECTED INHERENT VICSOSITY VS ELONGATION @ BREAK

POLYAMIDE 11 FOR ONSHORE NATURAL GAS PIPE

- 1980s- Australian Gas Company use of low pressure PA-11
- 1995 High pressure Rilsan pipe project initiated
- 2004 Complete 2-inch piping system available
- 2009 DOT Permitted 200 psi, 4in, DR11 or thicker, DF 0.4
- 2011 Over 35 miles of 4in DR11 installed, in-service at 200 psi
- 2018 DOT Permitted 250 psi, 6in, DR11 or thicker, DF 0.4

ADAS
Ed AL
to a

Higher pressure resistance Vs HDPE

Higher temperature resistance
Vs HDPE

AR	KEMA
INNOVATI	IVE 🔪 CHEMISTRY

	Temp	MDPE	HDPE	PA11
	°C (°F)			PA 32316
HDB (psi)	23°C	1250	1600	3150
MAOP (psig)	(73°F)	100	128	252
MAOP (bars)		7	9	17
MAOP (bars) HDB (psi)	81ºC	7 Not rated	9 Not rated	17 1600
MAOP (bars) HDB (psi) MAOP (psig)	81°C (180°F)	7 Not rated	9 Not rated	17 1600 125

INTRINSIC ELASTICITY OF POLYAMIDE 11

- Squeeze off for gas flow stop
- Simulation by applying a 20% tensile strain @ 23°C ۲
- Record residual strain with time after unloading ۲
- Recovery acceleration by heating above Tg (glass transition temperature) ۲

Better strain recovery of PA11

25 PA11 PA12 20 **Strain (%)** 12 5 n Initial strain After unloading +18 hours @ 80°C +3 hours

ENVIRONMENTAL STRESS CRACKING OF POLYMERS

Environmental Stress Cracking (ESC)

Failure by a crack propagation caused by the action of a load or stress and the swelling by a fluid or solvent

The more the swelling by solvent, the more the drop of the yield stress
Any initial crack or defect can be the source of ESC

<u>Réf</u>: Wright, David. Environmental stresse stress craking of plastics. s.l. : Rapra technology LTD, 1996.

ZnCl₂ RESISTANCE OF POLYAMIDES – SAE J 2260 PROTOCOL 23°C

ARKEMA

IS RAISED TEMPERATURE POLYETHYLENE GOOD FOR HC PROD ?

Standard HDPE (left) and PE-RT (right)

Designed for hot water Better creep vs PE100 Better SCG resistance

- Ethylene Octene comonomers
- Imperfection (yellow chain) is pushed out of the cristalline phase
- => more melecular link between 2 cristalline regions
- Better anti oxydant package

	PE-RT	PA 11
Melt Tm (°C)	131-135	180
∆T°C = Tm -80°C	50	100
Tg (°C)	<-50	0
Taux de cristallinité	50%	25%

<u>Réf</u>: SCHARMM, Detlef et JERUZAL, Mark. PE-RT, a new classe of polyethylene for industrial pipes. [En ligne] http://plasticpipe.org/pdf/pe_rt_new_class_polyethylene.pdf.

SCG IN CONTACT WITH HOT HYDROCARBON ?

Slow Crack Growth

Zone A: Elastic to Plastic deformation

- Stretching of amorphous phase
- Shearing of the cristalline phase
- Zone B: Fibrils creation zone and initiation of voiding , start of crazing

Zone C: Growth of the craze due to fibril elongation

Zone D: Craze turns into crack propagation as fibrils break under tension creep

ARKEM

<u>Réf</u>: GUEUGNAUT, et al. The "notched cylindrical bars under constant load test" (NCBT) for assessing the resistance to initiation of PE100 and PE100RC : determination of the initoation time. ENGIE. 2016.

IN-SITU NOTCHED CREEP TEST IN DIESEL @ 80°C

Creep tests @ 80°C for fine notched specimens

For PE-RT under 8MPa immediate failure during loading for Fine notched

Diesel makes the failure faster and decreases the strength of PE-RT : 6MPa Diesel is much faster than 8MPa air – (4MPa Diesel would be equivalent) ----- 50% loss

Better resistance of PA11 : 13MPa Diesel is like 16MPa in air -----only 19% loss

OBSERVATIONS UNDER SEM

Same fracture morphology between PE-RT (that study) and HDPE from ENGIE paper

* 3 different zones on the fracture surface for both PE-RT and PA11

For PE-RT (and HDPE) high amount of « wrinkles » caused by the rupture of the fibrils in the craze – PA11 is smoother indicating plastic flow rather than SCG

CONCLUSIONS

- The family of polyamide is wide and care should be taken when choosing the right polyamide for the right and safe application.
- Long chain polyamides are better vs short chain in term of hydrolysis resistance and stress cracking resistance to metal salts.
- Among the long chain, PA11 has some specifics that make it the best choice for mechanical resistance and ageing performance especially in subsea applications but also for onshore piping.
- It can be challenging to extend the use of polymers in environements where other physical mechanisms can highly degrade the performance – PE-RT in liquid HC
- PA11 « The right material at the right place Safety first »

THANK YOU FOR YOUR ATTENTION

