Minerals solutions for various modes of noise reduction in Polyolefins

SPE International Polyolefins Conference 2019

Prasad Raut,
Polymer Application Scientist
Maz Bolourchi
Sr. Manager Polymer Applications

IMERYS Performance Minerals
North America
Outline

- IMERYS
- Background
- Objectives/Approach
- Noise Reduction Modes & Test Results
 - DMA
 - CenterPoint
 - STL
- Mechanicals
- Conclusions
IMERYS - Leading Global Supplier of Performance Minerals

- €4.6 billion Revenue
- +50 Countries
- 18,300 Employees
- + 90 New products in 2016
- 270 Operating sites
- #1 or #2 On most of our markets

Imerys Technology Centers / Functional Additives

Over +30 Functional Minerals
Background

Vehicle Interior Noise

- Noise: Environment pollution
- Car noise: Caused by powertrain, wind/air and tire/road
- Electric/hybrid vehicles: Induction machines whines, higher vibration level, wind/air and tire/road. Zero BSR (buzz, squeak and rattle)¹

Current strategies (noise, vibration and shock control)

- Absorptive: Foams, coatings, perforated sheet metal
- Barrier: Mass-Loaded Plastics, Sealants and Sealing Tapes
- Vibration: Isolators, dampers, constraint layers
- Barrier/Foam composites
- Silencers

References

1) Sound & Vibration/April 2011, The Future of Electric Vehicle Noise Control
2) Images: https://earglobal.com/media/5748/floortreatment.jpg (accessed on 07.22.2018)
Screening Objectives

Objectives

- Evaluate performance of various minerals/grades for noise reduction
- Capture performance space in various noise treatments
 - Barrier
 - Damper
 - Absorber
- Understand relative mechanical performance of various mineral grades
- Identify difference in noise and mechanical performance as a function of particle size
Approach

Experimental
- Melt compound via 25mm co-rotating/intermeshing TSE (46:1, L/D)
- ASTM test specimen prepared via 66T Arburg injection molding unit

Sound Testing
- Dynamic mechanical analysis
- CenterPoint
- Sound transmission loss

Mechanical
- Test specimen conditioned 1 week at 23 °C/50% Rh prior to testing
- Testing conducted via ASTM standards/guidelines (D792, D1238, D256, D790, D638 and D648), and other internal methods
Materials

• PP Homopolymer - Ineos PP- H13M00
 o MFI = 13.5 g/10 min (@230 °C, 2.16 kg)
 o Flex Modulus = 1655 MPa

• Addivant Polybond 3000
 o Maleated PP
 o MFI = 405 g/ 10 min (@190 °C, 2.16 kg)

• Strucktol RP 11
 o Processing Aid (viscosity modifier)

• Minerals
 • Talc
 o Coarse (4.5 µm), fine (1.2 µm) and HAR (2.3 µm)
 • Mica
 o Coarse (150 µm) and fine (30 µm)
 • Wollastonite
 o HAR Coarse (18 µm, laser) and HAR medium (12 µm, laser)
 • CaCO₃
 • Fine (3 µm) and Ultra-fine (1.1 µm)
 • Graphite
 • Coarse (<150 µm) and fine (39 µm, d90)
 • BaSO₄ (3 µm, laser)
 • Chopped GF (10 µm x 4mm)
Noise Reduction Process

• **Type of sound**
 • Airborne noise (sound)
 • Structure-borne noise (vibration)

• **Type of treatments to reduce the noise**

 • Barrier treatment
 • Airborne Noise

 • Absorption treatment
 • Airborne Noise

 • Damping treatment
 • Structure-borne noise

• All treatments are frequency dependent
• Performance of damper is also temperature dependent
Noise reduction testing

1) Dynamic Mechanical Analysis (Damping)
2) CenterPoint (Damping)
3) Sound Transmission Loss (Barrier)
Dynamic Mechanical Analysis

Damping

- Reduction of kinetic energy present in a system, through transformation into another form of energy
- Damping performance is commonly expressed in terms of loss factor

Viscoelastic material

\[
\tan \delta = \frac{E''}{E'}
\]

- \(E''\): Loss modulus (viscous factor, dissipates energy)
- \(E'\): Storage modulus (elastic factor, stores energy)

Initial Position

Final Position

Loss tangent, \(\tan \delta\)

DMA
Three point bending mode
Test Results - Dynamic Mechanical Analysis

DMA performed in three point bending mode at 10 Hz frequency from -3 °C to 80 °C
30% Mineral filled PP

- Wide range of performances with mineral filled compounds
- Glass fiber filled compounds have lowest viscoelastic loss
Mica, wollastonite and CaCO₃ grades show superior damping behavior as compared to the neat resin.
CenterPoint Test (ISO16940)

Obtains the response (acceleration) as the bar is excited with specific force

Loss factor (η) = \frac{\text{Amount of energy lost or dissipated}}{\text{Maximum potential energy in the vibrating system}}

Test Conditions

- Temperature - 23 °C and 60 °C
- Frequency - 200, 400 and 800 Hz
Test Results - CenterPoint (ISO 16940)

- Test performed at 23 °C and 60 °C
- Loss factor at resonant frequencies are interpolated to 200, 400 and 800 Hz
Test Results - CenterPoint (ISO 16940)

- Test performed at 23 °C and 60 °C
- Loss factor at resonant frequencies are interpolated to 200, 400 and 800 Hz

- Performance is temperature dependent
- Talc, mica coarser grades to be superior to their fine counterparts
Sound transmission loss testing (per SAE J1400 (2017))

Sound transmission loss (STL)

\[\tau = \frac{\text{sound transmitted}}{\text{sound incident}} \]

\[STL = 10 \log \left(\frac{1}{\tau} \right) \text{ dB} \]
Test Results - Sound transmission loss testing (SAE J1400)

Controls

Sound Transmission Loss (dB)

- Neat Resin
- Glass Fiber
- Barium Sulfate

Frequency

Sound Transmission Loss (dB)

Talc

- Neat Resin
- Coarse Talc
- Fine Talc
- HAR Talc

Frequency

Mica

- Neat Resin
- Fine Mica
- Coarse Mica

Frequency

Wollastonite

- Neat Resin
- HAR Medium
- Wollastonite
- HAR Coarse

Frequency

SPE International Polyolefins Conference 2019
Test Results - Sound transmission loss testing (SAE J1400)

- All mineral filled compounds show 2-3 dB STL as compared to the neat resin
- Performance is density dependent; morphology has minimal influence
Summary: Noise reduction testing

- No universal solution for different types of noise treatments

- Dynamic mechanical analysis which imparts viscoelastic loss indicates mica, wollastonite and CaCO$_3$ are better than h-PP
 - **Recommendations:** Suzorite® Mica and Nyglos®, Aspect® Wollastonite line of products

- CenterPoint test which imparts vibrational damping shows **coarser grades** to be superior than their fine counterparts
 - **Recommendations:**
 - Room Temperature: JetFil® and Suzorite® coarser grades
 - Elevated temperature: JetFil®, Suzorite® and Nyglos® coarser grades

- STL data indicate improved barrier performance using all the mineral filled compounds (surface density effect)
 - **Potential Recommendations:** JetFil®, Suzorite® and Nyglos® line of products
Mechanical and thermal testing

Flex | Tensile | Izod Impact
Mechanical Properties

At 30% loading, tested in ASTM

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Measured Density, g/cc</th>
<th>Flexural Modulus (Young's Automatic), MPa</th>
<th>Tensile Strength, MPa</th>
<th>Notched Izod, J/m (RT)</th>
<th>HDT (66 psi), deg C</th>
<th>Noise mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>h-PP</td>
<td>0.913</td>
<td>1497</td>
<td>38</td>
<td>7</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Glass Fiber</td>
<td>1.112</td>
<td>5350</td>
<td>104</td>
<td>73</td>
<td>161</td>
<td>-</td>
</tr>
<tr>
<td>Barium Sulfate</td>
<td>1.197</td>
<td>1884</td>
<td>34</td>
<td>22</td>
<td>120</td>
<td>B</td>
</tr>
<tr>
<td>Talc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coarse</td>
<td>1.129</td>
<td>3496</td>
<td>37</td>
<td>23</td>
<td>142</td>
<td>B, V</td>
</tr>
<tr>
<td>HAR</td>
<td>1.131</td>
<td>4636</td>
<td>42</td>
<td>23</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Mica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coarse</td>
<td>1.135</td>
<td>4887</td>
<td>32</td>
<td>20</td>
<td>141</td>
<td>VE, V, B</td>
</tr>
<tr>
<td>Fine</td>
<td>1.138</td>
<td>4126</td>
<td>33</td>
<td>22</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Wollastonite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAR Coarse</td>
<td>1.140</td>
<td>4378</td>
<td>32</td>
<td>23</td>
<td>140</td>
<td>VE, V, B</td>
</tr>
<tr>
<td>HAR Medium</td>
<td>1.146</td>
<td>4958</td>
<td>36</td>
<td>21</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>CaCO₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine</td>
<td>1.133</td>
<td>2344</td>
<td>36</td>
<td>24</td>
<td>126</td>
<td>VE, B</td>
</tr>
<tr>
<td>Ultrafine</td>
<td>1.128</td>
<td>2370</td>
<td>33</td>
<td>22</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Graphite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coarse</td>
<td>1.103</td>
<td>4219</td>
<td>34</td>
<td>20</td>
<td>146</td>
<td>-</td>
</tr>
<tr>
<td>Fine</td>
<td>1.101</td>
<td>5100</td>
<td>36</td>
<td>20</td>
<td>147</td>
<td></td>
</tr>
</tbody>
</table>

- Various possibility among different minerals
- Range of properties within various grades of mineral
Conclusion

- Noise reduction using minerals:
 - **No universal solution**
 - Selection is dependent on type of noise treatment; also needs to meet mechanical properties
 - **Visco-elastic** damping: improvement with addition of mica, wollastonite and/or ground calcium carbonate
 - **Vibration** damping: improvement with coarser mineral grades
 - **Barrier**: improvement with mineral addition; performance appears to be density dependent

- Range of mechanical properties possible among various minerals and within specific mineral type
Conclusion

Selection is dependent upon specification requirements and cost

- **Talc**
 - Good stiffness-impact balance, color, compatibility, nucleation, *vibrational and barrier*. Exact grade depending on specification
 - **Recommendations**: Macro-crystalline/*Jetfil®, Jetfine®* grades (balance of vibrational-barrier and mechanical performance), Micro-crystalline/*Nicron®, Mistrocell®* (foaming, absorption)

- **Mica**
 - Material of choice for vibrational damping; bitumen/heavy layers
 - **Recommendations**: *Suzorite®* for maximum reinforcement, dimensional stability, potentially for all noise modes

- **Wollastonite**
 - Improves *viscoelastic damping and barrier performance*
 - **Recommendations**: *Nyglos®, Aspect®* for superior mechanical properties, flow and color
Thank you for your attention!

Acknowledgment
- Dr. Saied Kochesfahani
- Isaac Robledo
- Rahul Doke
- Gary Cook