Mitsui Plastics Inc.

New Catalyst Neutralizer Polymer Protector Additive for Polyethylene

Presented to the 2019 SPE Polyolefins Conference, Houston, TX
History of acid scavengers in Polyolefins:

- First Generation 1955+: For over 60 years Metallic Stearates and oxides have been used in PE. Originally designed for 1-3rd generation non-magnesium supported. Poor polyolefin oxidative stability requiring higher AO levels. Lewis Acid problem.

- Second Generation 1984+: Hydrotalcite used in PP and solution process LLDPE only. Improved oxidative stability. Color issues with certain catalysts and AO’s from high pH.

- Third Generation 2017+: Mitsui M-Series catalyst neutralizers and polymer protectors for 4th - 6th generation catalysts. Lower color improved and highest oxidative stability allowing AO reduction.
Mitsui M-Series Catalyst Neutralizer
Chemistry comparisons

<table>
<thead>
<tr>
<th>Mitsui Plastics Inc.</th>
<th>Metallic Stearates, Oxides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Various CAS numbers</td>
<td>FDA</td>
</tr>
<tr>
<td>Additive number:</td>
<td>3L</td>
</tr>
<tr>
<td>North America Supply</td>
<td>Developmental quantities</td>
</tr>
<tr>
<td>Particle size range in microns</td>
<td>0.5-0.8</td>
</tr>
<tr>
<td>Stoichiometry Formulation</td>
<td>Trade Secret</td>
</tr>
<tr>
<td>Acid mechanism:</td>
<td>Catalyst Neutralizer Polymer protector 4th, 5th 6th generation</td>
</tr>
<tr>
<td>Catalyst design:</td>
<td></td>
</tr>
</tbody>
</table>

- CaSt, ZnSt, ZnO
- USA, EU, Asia
- (C17H35COO)2 Ca (C17H35COO)2 Zn ZnO

Mitsui Plastics Inc. presentation to SPE Polyolefins Conference
Feb 24-27, 2019
Mitsui Plastics

Catalyst neutralizer efficiency
Catalyst acid neutralizer efficiency

- **36.1 average efficiency**: 500 ppm to neutralize 35 ppm of acid
- **4.8:1 average efficiency**: 1000 ppm to neutralize 210 ppm of acid
- **10:1 average efficiency**: 700 ppm to neutralize 70 ppm acid

Acid HCL ppm from TiCl4-MgCl2

Neutralizer ppm

Mitsui Plastics Inc. presentation to SPE Polyolefins Conference

Feb 24-27, 2019
Acid neutralized efficiency per similar volume

Correct neutralizer efficiency ppm neutralizer per 1 ppm acid

- High neutralizer efficiency
- PoorNeutralizer efficiency

- HT actual 35-3.4: 1
- CaSt theory 20:1 or
- Hydrotalcite Theory 10:1

ppm neutralizer per 1 ppm acid

- Catalyst efficiency

Mitsui Plastics Inc. presentation to SPE Polyolefins Conference

Feb 24-27, 2019
Acid produced by polyolefin type
Mitsui neutralizer effective all catalysts and all densities

PPM of neutralizer per 1 ppm acid

- mLLDPE
- Polypropylene
- Hydrotalcite
- Polyethylene
- Metallic stearates
- Plastomers
- Metallic oxides
- Elastomers EPR, EBR, EOR, EPDM
- Metallic stearates, metallic hydroxides

Decreasing density

Correct efficiency factor ppm neutralizer/ppm acid
Incorrect 10:1 efficiency factor

Mitsui new neutralizer range

Catalyst efficiency

Mitsui Plastics Inc. presentation to SPE Polyolefins Conference
Feb 24-27, 2019
M-Series catalyst neutralizer suggestions:

<table>
<thead>
<tr>
<th>Ziegler-Natta Catalyzed Polyolefins</th>
<th>SUGGESTIONS</th>
<th>ppm of acid from TiCl4</th>
<th>Commercial Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1g-cat/xxxxg Polyolefin</td>
<td>ppm Ti in polyolefin</td>
<td>phenolic AO ppm / phosphite AO ppm</td>
<td>Ppm of Mitsui M-Series</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ziegler-Natta Polyolefins</th>
<th>1gTiCl4 = 25.27% Ti</th>
<th>1gTiCl4 = 25.27% Ti</th>
<th>ppm of Mitsui M-Series</th>
<th>HCL = ppm Ti x (141.6/47.9 (ppm/mole))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1g-cat/50,500g 1kg-cat/50 tons PE</td>
<td>5 500/1000</td>
<td>600</td>
<td>35</td>
<td>0.934-0.920 LLDPE film grades</td>
</tr>
<tr>
<td>1g-cat/25,200g 1kg-cat/25.2 tons PE</td>
<td>10 375/750 =25% less AO</td>
<td>800</td>
<td>70</td>
<td>0.920-0.910 LLDPE film grades</td>
</tr>
<tr>
<td>1g-cat/12,600g 1kg-cat/12.6 tons PE</td>
<td>20-25 350/700 =30% less AO</td>
<td>1,000</td>
<td>140-175</td>
<td>0.880-0.909 Plastomers</td>
</tr>
<tr>
<td>1g-cat/8,400g 1kg-cat/8.4 tons PE</td>
<td>30 350/700 =30% less AO</td>
<td>1000</td>
<td>210</td>
<td>bi-modal HDPE (Mitsui CX).</td>
</tr>
</tbody>
</table>

- * ppm XRxl needed to neutralize catalyst acid, stabilized anti-oxidants and protect the polymer from degradation. 20x the HCL concentration.
- ** HCL from MgCl2 catalyst support which is 2.89 ppm HCL / 1 ppm Mg. So, 1 ppm Ti + 1 ppm Mg = 7 ppm HCL.
How does Mitsui’s M-Series neutralizer work?

- **Proprietary** blend designed for:
 - 4th – 6th generation TiCl4-MgCl2 catalysts.
 - polyolefin density ranges 0.640 – 0.965
- Color correction chemistry, Balanced pH and surface area = lowest color.
 - Performs excellent with antioxidants per pellet, LAB, YI.
- H/E lubricants reduces shear and heat stress
 - Improved polymer stability per FTIR
 - Improves antioxidant efficiency per OIT, HPLC
Polyethylene results

Mitsui ZRxL Development in HDPE pipe and LLDPE film resins
Problems with metallic stearates and oxides in Polyethylene

1. Acid scavenging chemistry:
 \[
 \text{CaSt} + 2\text{HCL} \rightarrow \text{CaCl}_2 + \text{Stearic acid}
 \]

2. \text{CaCl}_2 is a corrosive “Lewis acids” (ref.1)
 - Lewis acid examples: TiCl4, ZrCl4, ZnCl2, CaCl2, NaCl
 - Lewis acids destroy antioxidants and hindered amines (HALS).

3. \text{Stearic acid} has a 114°C flash point so carbonizes which forms black specs, die smoke and plate out.
Problems with metallic stearates and oxides at molders

- **Black specs**
 - Molded from 1st extruder pass of 0.906g/cc density LLDPE.
Polyethylene formulations

- **Bi-Modal HDPE**
 - 0.03 MI, **0.949 g/cc density**
 - Extrusion at 90 RPM, **Tm 190°C** *
 - Antioxidants: 500 ppm AO 1010 + 500 ppm AO 168
 - MPI 7L development vs Controls: CaSt, HT, HT-2

- **C6-LLDPE**
 - 0.50 MI, **0.917 g/cc density**
 - Extrusion at 90 RPM, **Tm 190°C** *
 - Antioxidants: 500 ppm AO 1010 + 500 ppm AO 168
 - MPI 3L development vs Controls: CaSt, ZnSt, ZnO, HT-2

- **C6-LLDPE**
 - 0.50 MI, **0.917 g/cc density**
 - Extrusion at 30 RPM, **Tm 250°C under N2** **
 - Antioxidants: 500 ppm AO 1010 +1,000 ppm AO 168
 - MPI 737P development vs HT, CaSt

New Fall 2018 developments with 25-30% AO reduction
Polyethylene formulations

- **C6-LLDPE**
 - 0.50 MI, 0.906 g/cc density
 - Extrusion at 30 RPM, \(\text{Tm} \, 250 \, ^\circ \text{C} \)
 - Antioxidants: 800 ppm AO 76 + 1400 ppm Weston 705T.
 - MPI 3L and 37L development vs CaSt

* Extruder details: 3/4in 20mm SSE with 33:1 L/D with 2 mixing zones \(Z_1 = 170 \, ^\circ \text{C}, Z_2 = 190 \, ^\circ \text{C}, Z_3 = 190 \, ^\circ \text{C} \), Die 190 C, screw RPM = 90

** Extruder details: 3/4in 20mm SSE with 33:1 L/D with 2 mixing zones
 - Die 250C, screw RPM = 30,
 - Rate 1.5-3.0 kg/hour.

Molding details: 30 Ton hydraulic injection press (SPEC capable, ASTM, ISO, test bars, 3"x3" GM texture Plaques, machined-in notched Izod bars.) 390/450/450 Deg. F, 2500psi
 - 30 seconds cooling time.
HDPE data:

Bimodal pipe grade 0.947 g/cc
Blow molding grade 0.950 g/cc

M-Series 7L development vs calcium stearate and Hydrotalcite
Extrusion at 90 RPM, Tm 190°
Antioxidants: 500 ppm AO 1010 + 500 ppm AO 168
M7L protects antioxidants

MPi 7L 32% less HDPE oxidation vs HT and 56% less than Calcium stearate

OIT @200c minutes

Mitsui Plastics Inc. presentation to SPE Polyolefins Conference
M7L 31% - 80% more AO retained

1st vs 5th Extruder Pass 200c.

1st pass 7L retains 31% more AO vs CaSt

5th pass 7L 60% more 1010 retained vs CaSt

5th pass 7L 80% more 168 retained vs CaSt
M7L reduces extruder pressure in HDPE

ZR7L 20% lower extrusion pressure than HT and ZHT
M7L lowest color in Bi-modal HDPE pipe grade

Melt 190c

![Bar chart showing B color for different materials: Ctrl, AO, HT, HT-2, Cast, MPI 7L. Each material has three bars representing different values.]

19

Mitsui Plastics Inc. presentation to SPE Polyolefins Conference
Feb 24-27, 2019
M7L 40-60% improvement in the quality of HDPE molded parts

% Standard Deviation from molding 10 HDPE parts

- AO only
- 500 ppm HT-2
- 1000 ppm CaSt
- 1000 ppm MPI 7L

TS % Std.Dev
1% Flex Mod % Std. Dev
M37L and M3L shows no color oxidation in HDPE

0.950g/cc HDPE pellet YI
SSE 1.25inch (32mm). 100 RPM at 550F (287c). 0 pass N2
800 ppm AO 1010 + 800 ppm AO 168 + below catalyst neutralizers
C6-LLDPE 0.917g/cc

MPI 7L and 37L development
vs CaSt, ZnSt, ZnO and Hydrotalcite

Extrusion at 90 RPM, Tm 190c

Antioxidants: 500 ppm AO 1010 + 500 ppm AO 168
M7L stable multi-pass MI
0.917 C6-LLDPE MI 190c/10kg

Increasing ppm of stearic acid + Lewis acid cracking the PE.
M3L and M7L low color LLDPE

YI from molded tensile bars 1st extruder pass, 3rd and 5th. 70c 6 week oven aging from 3rd pass.

Extruder details: 3/4in 20mm SSE 33:1 L/D
with Z1 =170 C, Z2 =190 C, Z3 =190 C, Die 190 C, screw RPM =90, Screw: mixing head

Diagram:
- MPI 3L 1000ppm
- MPI 7L 1000ppm
- ZnSt 1000ppm
- HT-2 500ppm
- CaSt 1000ppm
- ZnO 800ppm
- No AO
- AO Only 500-1010, 500-168

YI 1st pass
YI 3rd pass
YI 5th pass
YI 70c 6 wks 3rd pass

ZnO blue shade pigment color change is very high.
M3L 30% lower extruder pressure in LLDPE

Extruder pressure change
Z1 = 170 C, Z2 = 190 C, Z3 = 190 C, Die 190 C, screw RPM = 90, Screw: mixing head

NOTES: ZnO 1st extrusion black die drool and by 5th black powder residue
M3L and M7L 60-75% improvement in quality in LLDPE

Polymer Performance Quality Quotient = Higher number better quality
 HDPE 1% mod / Std. Dev
 LLDPE TS / Std. Dev

Red → Part to part Std. Dev. Lower number better quality
C6-LLDPE 0.917g/cc

New M-Series M737LP developments NOV 2018 vs calcium stearate and Hydrotalcite

1, 3, 5 Extrusion at 30 RPM, T_m 250°C under N2
Antioxidants: 500 ppm AO 1010 +1,000 ppm AO 168
M737P no yellow 1-5 extruder passes

Pellet YI yellowness Index. AO only YI = 5.6

<table>
<thead>
<tr>
<th>Material</th>
<th>1st pass</th>
<th>3rd pass</th>
<th>5th pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaSt 1000 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-1 500 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M737LP 800 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M737LP 1000 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M737LP 800 ppm, 25% less AO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M737LP 1000 ppm, 30% less AO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M737P even with 30% less AO more stable than the Calcium Stearate Control

MFR 230c, 2.16kg AO only 8.33g/10min.
M737P high oxidative stability even with 30% less antioxidants

OIT (oxygen induction time) 200°C in minutes

M737LP 45-145% increase in oxidative stability

Mitsui Plastics Inc. presentation to SPE Polyolefins Conference
Feb 24-27, 2019
C6-LLDPE 0.906 g/cc
Mitsui’s M-Series M3L and M37L compared to Calcium Stearate
Extrusion at 30 RPM, Tm 250 c
Antioxidants: 800 ppm AO 76 + 1400 ppm Weston 705T.
M3L and M37L show improved MI stability in LLDPE plastomer

LLDPE 0.906g/cc MFR 230c/10kg vs 1,3,5 extrusions 246c

1200 ppm CaSt control
1000 ppm Mitsui 3L
1000 ppm Mitsui 37L

1,3,5 % change 1st pass 3rd pass 5th pass
Mitsui 3L and 37L show excellent low YI color in LLDPE plastomer.

LLDPE 0.906 YI E313; 1, 3, 5 extrusion passes 246c

- 1200 ppm CaSt control
- 1000 ppm Mitsui 3L
- 1000 ppm Mitsui 37L

1st pass, 3rd pass, 5th pass
FTIR oxidation values vs YI raw data

FTIR raw data

<table>
<thead>
<tr>
<th></th>
<th>M3L 1st</th>
<th>M3L 5th</th>
<th>M37L1st</th>
<th>M37L5th</th>
<th>CaSt 1st</th>
<th>CaSt 5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corr Area</td>
<td>1/cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH2 group</td>
<td>720</td>
<td>2.319</td>
<td>2.865</td>
<td>4.223</td>
<td>1.28</td>
<td>3.71</td>
</tr>
<tr>
<td>CH2 group</td>
<td>730</td>
<td>1.246</td>
<td>1.085</td>
<td>1.124</td>
<td>1.953</td>
<td>1.354</td>
</tr>
<tr>
<td>C-C bond</td>
<td>1465</td>
<td>0.842</td>
<td>0.481</td>
<td>1.781</td>
<td>0.946</td>
<td>1.301</td>
</tr>
<tr>
<td>C=O</td>
<td>1720</td>
<td>0</td>
<td>0.062</td>
<td>0.137</td>
<td>0.277</td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>1740</td>
<td>0</td>
<td>0.039</td>
<td>0.193</td>
<td>0.549</td>
<td>0.356</td>
</tr>
<tr>
<td>OH</td>
<td>3603</td>
<td>1.528</td>
<td>2.013</td>
<td>1.306</td>
<td>3.468</td>
<td>1.883</td>
</tr>
</tbody>
</table>

Carbonyl Index (area) vs. YI

![Graph showing FTIR oxidation values vs YI](image)

The correlation equation is:

\[y = 7.7803x - 7.11 \]

\[R^2 = 0.9267 \]

Ratio C=C/C2

| 1740/730 | 0.035945 | 0.171708 | 0.281106 | 0.262925 | 2.654676 |

Ratio C=O/C2

| 1720/730 | 0 | 0 | 0.031746 | 0.101182 | 1.992806 |

Pellet YI

-8.97, -5.35, -9.34, -4.78, -6.12, 8.33
M Series no PE oxidation and lowest color. CaSt high oxidation even with low color.
M-Series recycle improvements + odor reduction

- **Performance:**
 1. 45-145% increased time to oxidize. (DSC OIT oxygen induction time at 200c.)
 2. Antioxidant is preserved per LC analysis:
 - 30% increase 1st extruder pass
 - 60-80% increase 5th extruder pass
 3. Average 50-90% less degradation - per FTIR. (C=O carbonyl @1720-1740-cm / C2 % @ 730-cm)

- **Value:** average 50-90% increase in recyclability and odor reduction due to antioxidant preservation and reduced polymer oxidation.
Mitsui Plastics Inc. M-Series for Polyethylene

Summary

- Market:
 - Effective in all 4th – 6th generation ZN catalysts.
 - Replace 800 -1,000 ppm metallic stearate or metallic oxide with equal ppm of M-Series.

- Improved Quality:
 - 45-145 % increased time to oxidize. (OIT DSC oxygen induction time at 200c.)
 - 30% increase in antioxidant retention - per HPLC 1st extruder pass. 60-80% by 5th pass.
 - 40-50% reduction in film gels – per customer
 - Average 50-90% less degradation - per FTIR. (C=O carbonyl @1720-1740-cm / C2 % 730-cm)

- Improved: Performance:
 - 20-30% reduction in extruder pressure. Possible, lower melt fracture.
 - 40-60% increase in LLDPE tensile strength and HDPE Flex. Mod.
 - 40-75 % reduction in part to part Std. Dev.

- Savings + improved quality and performance – up to $500,000 / each 1B lbs.
M-Series powder and pellet forms

Made in Germany (pellets in mm)

Made in USA
For further information and samples:
Reference:

- Please contact:
 - Don Beuke – Mitsui Plastics Inc.
 - 918-914-2947
 - D.Beuke@mitsui.com

- REF 1. Mechanism of Lewis Acid Metallic stearates and oxides
 - ZnCl₂ CaCl₂ are Lewis acids because it can accept an electron pair from a Lewis base like OH- Tert-butyl phenolic antioxidant.
 - A Lewis acid is a molecule that can accept an electron pair and a Lewis base is a molecule that can donate and electron pair. When a Lewis base combines with a Lewis acid an adduct is formed with a coordinate covalent bond.
 - i.e. CaCl₂ + 2 (OH- T-butyl phenol) →Ca(OH)₂ + 2Cl +2 H₂O → 4HCL + O₂
Thank you

SPE Polyolefins Conference – Dr. Thoi Ho Additives Chair.
Our polyolefin customers – you know who you are!
Mitsui Plastics Inc. USA – financial support (many RINGI’s)
Amazing plastics laboratories: Nobukatsu Shigi – Japan, Dr. Amit Dharia – USA,
The values and information represented herein are typical and should not be considered to represent any specification. Mitsui Plastics, Inc. ("Mitsui") does not guarantee the reproducibility of the data represented herein in customer's own or contracted testing facility. Mitsui makes no warranty, express or implied, regarding merchantability or fitness for a particular purpose. Freedom from the infringement of a patent of Mitsui or any other party is not to be inferred. Customer is solely responsible to verify the suitability of the material for their intended use. In no case shall Mitsui have any liability to any person in respect of any loss, claim, damages, costs or liability arising from reliance on any information contained in this report or use of this report.