Biodegradation Studies and Experiments for Materials in the Marine Environment Series

RIMALOF

Part 3: New State of the Art Laboratory / Facility for Investigation of Materials in the Marine Environment

Dr. Micheline Labrie Research Assistant Professor School for Marine Science and Technology, UMass Dartmouth

MASSACHUSETTS TECHNOLOGY COLLABORATIVE

<u>About Me</u> Dr. Micheline Labrie

Current Position

Research Assistant Professor, Department of Estuarine and Ocean Sciences Science Lead, Biodegradability Laboratory Researcher, Coastal Systems Program

Background

Biogeochemistry

Nutrient cycling in coastal systems

- University of Massachusetts Dartmouth Facilities
 - School for Marine Science and Technology
 - Establishment of the Biodegradability Lab
- Biodegradability Laboratory
 - Biodegradation overview
 - ASTM Standard Methods
 - Instrumentation
 - Micro-Oxymax Respirometers (4 systems)
 - Testing for Biodegradable Polymers
 - Tier 1 Methods for biodegradation
 - Measuring environmental conditions
 - ASTM D6691 variables to consider
 - Next Steps

*

*

Validation experiments
 Questions for Panel

BIODEGRADABILITY LABORATORY

♥ PRIMALOFT_® BIO™

MASSACHUSETTS

Mass Tech Collaborative & PrimaLoft investments: >\$1.1M

1. Increase Biodegradability Testing Infrastructure

 Expand testing resources for industry needs. Quality control and product development

2. Accelerate Product Development

1. Screening tests like ASTM D6691

3. Establish Core Facility

- 1. Open lab for internal and external use.
 - 1. Research applications beyond biodegradable materials
- 2. Implement recharge rates for services

NEWS & PRESS RELEASES // 2021 // BAKER-POLITO-AWARDS-UMASS-DARTMOUTH-BIODEGRADABLE-PLASTICS-LAB

UMass Dartmouth awarded nearly \$1.2M for new Biodegradable Plastics Lab

Baker-Polito Administration awards \$700k, PrimaLoft gives \$450K in public-private investment to boost new marine tech research facility for the South Coast

BIODEGRADATION

Plastic biodegradation is the extensive conversion of polymer carbon to CO_2 (under oxic conditions) or CO_2 and CH_4 (under anoxic conditions), and new microbial biomass, over a specific timeframe.

SAPEA Evidence Report 8, 2020

Terminology:

Polymer (to be tested) will be referred to as either the control or experimental substrate.

ASTM STANDARD METHODS

7

ASTM D6691 Seawater aerobic ASTM D5511 High-solids anaerobic

ASTM D5210 Wastewater anaerobic ASTM D5338 Compost aerobic

ASTM D5988 Soil aerobic

Micro-Oxymax Closed-Loop Measurement Method

COLUMBUS

9

Expansion interfaces

Micro-Oxymax 60 Channel System (ASTM D6691)

- Closed-loop system
- Aerobic
- 0-3% CO₂ Non-dispersive infrared detector
- Condensing air driers
- Two orbital shakers

The Micro-Oxymax Respirometer is a highly sensitive instrument with a maximum sensitivity of 0.2 uL/hour rate calculation

Temperature and light controlled incubator

Orbital shaker with 250 ml reactor vessels

Micro-Oxymax 60 Channel System (ASTM D6691)

0-3% sensor range CO₂ (Non-Dispersive Infrared Detection)

Drying columns

Sample drier: Remove water vapor from sample gas prior to concentration measurement

Host computer for fully automated sampling

Sample pump: maintains constant flow rate (0.5 L/min) and pressure to prevent errors caused by barometric pressure changes

Micro-Oxymax 80 Channel System (ASTM D6691 & D5988)

- Closed-loop system
- Aerobic
- Temperature and light controlled environmental control room set to 30°C
- 0-3% CO₂ Non-dispersive infrared detector
- Two orbital shakers w/ large platforms

Micro-Oxymax 80 Channel System (ASTM D5511 & D5210)

- Two vessel closed-loop system
- Anaerobic
- Temperature and light controlled incubator set to 52 °C
- 0-3% CO₂ and 0-5% CH₄ Non-dispersive infrared detector

Micro-Oxymax 40 Channel System (ASTM D5338)

- Open flow system (highly active samples)
- Aerobic
- Temperature and light controlled incubator set to 58 °C
- 0-10% CO₂ Non-dispersive infrared detector
- 0-100% O₂ Paramagnetic sensor
- Condensing air driers
- 3.5 L wide-mouth reactor vessels

13

- Respirometry methods
- ASTM D6691
 - Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in the Marine Environment by a Defined Microbial Consortium or Natural Sea Water Inoculum

Tier II – Confirmatory in Marine Environment

- Incubation methods / Weight loss as a function of time
 - Static Laboratory
 - Dynamic Aquarium
 - ASTM D7473 Test Method For Weight Attrition of Plastic Materials in the Marine Environment by Open System Aquarium Incubations
- Tier III Confirmatory in Marine Environment
 - Incubation methods / Weight loss as function of time
 - Coastal Studies
 - Deep Sea Moorings

Environmental Conditions

ASTM standard method prescribed parameters

Carbon content (%C) of experimental and control substrates

Biochemical transformation during the aerobic incubation:

 $C + O_2 \rightarrow CO_2$

15

Each mmole (12 mg) of organic carbon from the experimental/control substrate can be converted into 1 mmol of gaseous CO₂

Total carbon in the experimental/control substrate:

$$C_i \ (mmoles \ substrate) = \left(mg \ C \ (substrate) \times \frac{\% \ C \ (substrate)}{100} \right) \times \left(\frac{1 \ mmoles}{12 \ mg} \ C \right)$$

where:

% C (carbon content) is determined through elemental analysis (Coastal Systems Program).

Environmental Conditions

Adhering to ASTM standard method prescribed parameters and

- Natural Seawater (pre- & post-incubation measurements)
- Temperature
- pH
- Particulate organic carbon
- Macronutrients (required for bacterial activity)
 - Nitrogen
 - Particulate
 - Dissolved (ammonium, nitrate+nitrite)
 - Dissolved phosphorus (ortho-phosphate)
- Salinity

- Perkin Elmer Elemental Analyzer for CN analysis
- pH meter/titrator
- Conductivity meter
- Seawater filtration setups and drying ovens for POCN and Chla
- Spectrometry/autoanalyzer for full suite of N species and phosphorus

SMAST

- Seawater lab for raw seawater collection
- -32C freezer and 4C cold room for sample storage
- Autoclave/deionized water

Ammonium & orthophosphate measured via optical density

Biodegradability Lab First Year Milestones

- Setup and installation of Micro-Oxymax respirometers
- Preliminary Tests of seawater blanks and positive controls
- Standard operating procedure in accordance with ASTM D6691
 - Experiment Parameters
 - \circ 250 ml vessels
 - \circ 75 ml seawater per vessel
 - \circ 20 mg experimental/control substrate
 - Micro-Oxymax & Instrument Parameters
 - \circ 60 rpm shaker speed
 - \circ 8 hr sampling interval

			
Channels		l iming	
Start Unamber	1 -	Sample Interval(Hours)	8.00 - (480n
End Chamber	60 💌	Experiment Duration(Hours)	N.A. 🔻
Refresh		Data Units	
Refresh Threshold(%)	0.50 👻	Gas Units	uM 👻
Refresh interval	N.A 👻	Time Units	hour 👻
Refresh Window(sec)	Auto 👻	Normalization Units	N.A. 🔽
Misc Setup			<u>,</u>
Auto Volume Measureme	ent 🗖		
Purge Sensors	V		
Switch Driers		Manually Enter Chamber Tem	ps 🗆
02 Consumption Positive	• 🗆	Aux. Temp Start Channel	N.A. 🔻
Enable Open Flow Mode	· 🗆		,
<u>O</u> pen Stop	<u>B</u> un	<u>S</u> ave <u>P</u> rint	<u>E</u> xit

Setup				Chamber Setup							
	Filen Starti Interv	ame: \1 ime: 20 val: 14	fest00001.Da 28:49 Wed A	t ug 09 23							
	Int	Ch	Time (Hours)	CH_Temp (°C)	RQ (RER)	CO2 %	CO2_Rate (uM/h)	CO2_Cum (uM)	Pressure (mmhg)	Status	
l	13	26	106.08	30.72	0.00	0.048	0.093	10.10	800.87		
	13	27	106.13	30.78	0.00	0.028	0.050	5.18	800.87		
	13	28	106.19	30.86	0.00	0.151	0.641	75.14	800.87		
l	13	29	106.24	30.93	0.00	0.054	0.071	11.69	800.88		
ĺ	13	30	106.29	30.98	0.00	0.122	0.454	55.26	800.87		
-1											

Variables to Consider

- $\,\circ\,$ Natural seawater vs defined culture
 - We never explored the defined culture because we have a readily available water source (SMAST seawater lab)
- Natural seawater
 - Seasonality
 - Water quality constituents (e.g., particulate organic matter)
 - Microbial community composition
 - Long term water quality monitoring at SMAST
 Pier

- Variables to consider (continued)
 - $\,\circ\,$ Seawater handling
 - Collection
 - Raw seawater collection from the SMAST seawater lab
 - By Boat or pier using Niskin water sampler or geopump
 - Volume needed, depth/current
 - Storage
 - Temperature (ambient or 30°C)
 - Duration (same-day vs. weeks)
 - Aeration

21

Variables to Consider (continued)

- Positive control (cellulose, chitin, Kraft paper)
 - Sigmacell cellulose, Type 101
 - Dispensed as a suspension
- Polymer form (fiber or film vs microcrystalline cellulose)
 - Experimental substrate should be in the same form as controls
 - Cryomill, Retsch Mixer Mill MM400 with LN₂

Highly purifie

Variables to consider (continued)

- $\,\circ\,$ Cleaning reactor vessels
 - Scrub/rinse, acid bath, and autoclave

22

Biofilm formation

1. Sample gas + water vapor returned to vessel (0.5 L/min flow rate)

4. Sample gas returned to vessel (0.5 L/min flow rate)

INCORRECT SLOPE

CORRECT SLOPE

UNEXPECTED ISSUES

25

- Standard method not so standard. • Differences between groups running the ASTM D6691 Standard Method
 - Shaker speed (175 rpm vs 60 rpm)
- Negative cumulative rates in seawater blanks.
 - Scrub CO₂ from refresh and sensor purge air with soda lime column
- Variability in seawater blank replicates

Qty: 350 G Size: 4-8 Mesh Next Steps

26

- Complete validation experiments
 - 70% biodegradation of the positive control
 - Consistent blank and positive control replicates (std dev < 20% of the mean, ideally < 5%)

% Biodegradation =

$$\frac{mean C_g (substrate) - mean C_g (blank)}{C_i (substrate)} \times 100$$

where:

 C_g = amount of gaseous carbon produced from the experimental/control substrate and culture blank, µmoles, and C_i = amount of carbon in experimental substrate added, µmoles.

$$\frac{544.26 \text{ umoles} - 27.50 \text{ umoles}}{656.2 \text{ umoles}} \times 100 = 78.6\%$$

Dr. Jo Ann Ratto Ross

Professor Linda A. Amaral-Zettler

Coastal Systems Program Eden Research Labs

THANK YOU

PRIMALOFT.

New State of the Art Laboratory / Facility for Investigation of Materials in the Marine Environment

Questions?

New State of the Art Laboratory / Facility for Investigation of Materials in the Marine Environment