

IMPROVE YOUR CHROMATOGRAPHY WITH REFRACTIVE INDEX

27.08.2020

3400+ EMPLOYEES 72 % MEN, 28 % WOMEN, INCLUDING 2.5 % APPRENTICES

Agenda

- GPC calibration process & the role played by dn/dc values
- How a refractometer can improve the GPC calibration process
- Requirements and the specifications your refractometer must meet

GEL PERMEATION CHROMATOGRAPHY CALIBRATION PROCESS

GPC calibration process & the role played by dn/dc values

- Liquid chromatography technique
- Polymer or molecule size distribution
- Dispersity and molecular weight
- Separation based on hydrodynamic volumes
- Often used for polymer solutions and also in food or pharmaceutical applications

GPC calibration process & the role played by dn/dc values

Instrumentation, material & method

- Instrumentation similar to liquid chromatography
- **Gel**: stationary phase e.g. agarose gel
- Column: Filled with microporous packaging

Anton Paar

- Eluent: mobile phase (solvent for polymers)
 e.g. tetrahydrofuran (THF)
- Detector: UV; refractive index or differential refractometer

Gel permeation chromatography calibration process

Instrumentation, material & method

Refractive index detector → detection of concentration differences
 RI_{Output}= K_{RI}*dn/dc*concentration*inj. Volume

Anton Paar

Light scattering → detection of molecular weigth

LS_{Output}= K_{LS}*Mw*(**dn/dc**)^{2*}concentration*inj. Volume

dn/dc – specific refractive index increment – is the important parameter

GPC calibration process & the role played by dn/dc values Calibration process

- Use of different polymer standards

Anton Paar

- Typical standard is polystyrene or PMMA in THF
- Retention period and molecular size is used for calibration curve
- Use of literature data for dn/dc, online or benchtop refractometer

GPC calibration process & the role played by dn/dc values What's in for you?

- Save 20% of your time for a second analysis round due to wrong calibration
- Avoid complaints due to faulty results
- Prove your calibration process
 by testing all your standards with RI

 \rightarrow Good measurement starts with the calibration

HOW A REFRACTOMETER CAN IMPROVE THE GPC CALIBRATION PROCESS

Refractive index

The refractive index is expressed as the ratio of the speed of light in the vacuum (v_{Vacuum}) relative to the speed of light in the medium (v_{Medium})

Standard conditions:

- 20 °C or 25 °C
- 1013 mbar
- 50 % relative humidity
- 589 nm, sodium D- line

Refractive Index Measurement

Which substances can be measured?

- Liquids
- Pastes
- Soft Matter / Polymers
- Solids
- Turbid, colored and non-transparent samples

Powders can not be measured

Anton Paar

How a refractometer can improve the GPC calibration process Prove your calibration

- Prove dn/dc of your polymer solutions e.g. PS in THF
- Apply your standard solutions to the refractometer
- Calculate the linear function and get the dn/dc value
- \rightarrow high accuracy necessary

Correlation of the refractive index (20 °C, 633.1 nm) with the polymer solutions and the corresponding polynomial fit.

Waiting for your sample

In-built application know-how

	А	В	С	D	E	F	G	Н	I	J
1										
2		Polymer conc. 🔽	Refractive index 💌		1,418 -					
3		0	1,407							
4		0,05	1,41625		^{1,416} و					•
5		0,01	1,40885		ิ่ิิส					
6		0,015	1,40977		e 1,414 -					
7		0,03	1,41255		p 1 412 -			/		
8		0,05	1,4162		.= ^{1,412}					
9		0,12	measuring		້.2 ປີ 1,41 -				y = 0,1845x +	1,407
10					efra	/				
11					1,408					
12					•					
13					1,406 -				++	
14						0 0,01	0,02	0,03	0,04 0,0	5 0,06
15					Polymer conc. [mg/mL]					
16										

Influence of Wavelength on dn/dc

Dispersion

Phenomenon: Different refraction of the spectral components of a light depending on wavelength

Abbe number

- Measure of the material's dispersion characteristic
- Used as a specification for polymers and other transparent substances
- Measuring the refractive index value at a variation of wavelengths
- \rightarrow Influence on dn/dc is not negligibly (up to 10% between 430nm and 650nm)

Influence the wavelength on dn/dc (20 °C) of PS in THF

Refractive Index Applications for Polymes

Applications & Solution

Refractive index as a quality parameter for polymer films

- Substance (material constant)
- Optical density (polymerization degree, chain length, etc.)

Optical matching with substrate

– Should be similar to avoid reflections and visibility of layers

Dispersion determination by multi-wavelength

Avoid chromatic abbreviation (e.g. for screens)

Refractive index for particle size analysis by DLS

Refractive index of particles is necessary for precise results

REQUIREMENTS AND THE SPECIFICATIONS YOUR REFRACTOMETER MUST MEET

Anton Paar

Requirements and the specifications your refractometer must meet Specifications

Refractive index

- Accuracy: 0.00002nD
- Range:
- 1.26 1.60nD

Temperature

- Accuracy 0.05°C
- Range:
- 20°C or 25°C

Readings at a glance Visual QC-Mode

- Immediate visual pass- or fail feedback
- Acceptance range for sample defined in methods
- Objective pass- / fail judgment independent of user
- Avoidance of human errors

Reliable results within seconds

1, 2, 3, Result!

- Generally no sample prep required
- Fast measuring times (based on powerful Peltier temp. control)
- Stable readings within 4 sec¹ (with time-saving temperature-corrected measurements)
- Clean with one swipe (due to small surface area of sample well)

Calibration Safe & Easy

Guided checks & adjustments

2) Physikalisch-Technische Bundesanstalt (Germany's Metrological Inst.)3) Central Office of Measures (Poland's Metrological Inst.)

- Guided checks & adjustments minimizing trainings and errors
- Checks compliant with GxP requirements
- Recorded adjustment history for full traceability
- Reference standards traceable to PTB² or GUM³

Portfolio Refractometers

Further Refractive Index Applications for Polymes

Refractive index as a quality parameter for polymer films

- Substance (material constant)
- Optical density (polymerization degree, chain length, etc.)

Optical matching with substrate

– Should be similar to avoid reflections and visibility of layers

Dispersion determination by multi-wavelength

Avoid chromatic abbreviation (e.g. for screens)

Refractive index for particle size analysis by DLS

Refractive index of particles is necessary for precise results

Summary

Gel permeation chromatography calibration process

- Standards with different polymer sizes are used e.g. polystyrene in THF
- Save 20% of your time, avoid faulty results and prove your calibration

How a refractometer can improve the GPC calibration process

Prove your dn/dc results and improve your calibration

Requirements and the specifications your refractometer must meet

- 1.26 1.60 refractive index range, with 0.00002 accuracy
- In-built application know-how, visual QC mode and guided checks

THANK YOU FOR YOUR ATTENTION!

Tobias.Husemann@anton-paar.com

+49 (0)511 4009566

Upcoming

Weak acids, strong bases - Replace Titration with Refractive Index Measurements within Seconds

2020-10-08 09:00 - 09:30 (CET UTC+02)

Read more >>

Your questions.

www.anton-paar.com