The 3 Challenges in Plastics Testing

COMPLIANCE | VARIABILITY | EFFICIENCY By Sammi Sadler

CONTENTS

• TEST RESULTS

- Factors that Influence Results & Solutions
- Troubleshooting

- INCREASING LABORATORY EFFICIENCY & THROUGHPUT
 - Factors that Influence Test Time
- TESTING STANDARDS

Disclaimer

The following document was written as a guide and is not intended to replace the respective test standards covered. This document is designed to summarize the main changes of certain standards related to materials testing equipment. It by no means includes all changes. Any errors in this documentation are not the responsibility of Instron. It is important that you own an official and current copy of all standards used to ensure you're in compliance with the standards.

TEST RESULTS

Why are my results inconsistent?

FACTORS THAT INFLUENCE RESULTS

So, you're performing the tests to the standard and you're still seeing variability? There are many factors that can contribute to variability in results...

SPECIMEN ALIGNMENT

Proper Alignment leads to

- Increased strain
- Better repeatability
- Higher yield stress
- Increased tensile strength

Tensile strain (Strain 2) [%]

CORRECTING SPECIMEN ALIGNMENT

<u>Specimen</u> <u>Centering Aids</u>

 Ensure specimen is vertical and centered in grips

Available for most side-acting and wedge grips

Jaw faces sized for your specimen

EXTENSOMETER PLACEMENT/ATTACHMENT

When extensometers are not attached properly, it can negatively affect the results.

misaligned, high, low

Manual devices are more susceptible to misuse but work well when used properly. Automatic extensometers eliminates this variable.

Automatic vs. Manual

- Modulus
 - Better repeatabilit
 - Higher mean
- Strain
 - Better repeatability

Toe Compensation

- Required by both ASTM & ISO
- Recommendation: Use pre-load & auto-balance extension (NOT LOAD)

Toe Compensation – Why Balance Extension & Not Load?

- After a specimen is installed into grips there is some slack present
- Pre-load to remove the slack
- Distance traveled is not from specimen straining!
- Small load is real load!

Thermal Effects

- Heat of user's hands effect material properties
 - Premature breaks
- Varies from person to person

Repeatability Investment vs. Effectiveness

EFFECTIVENESS

COST

INCREASING LABORATORY EFFICIENCY & THROUGHPUT

How much time can you gain?

The difference is measurable

TYPES OF SETUPS

- Manual wedge grips
- Micrometer + calculator
- Clip-on extensometer

- Pneumatic grips with alignment aids
- Integrated micrometer
- AutoX750 extensometer

THE CYCLE TIME FORMULA

THE DIFFERENCES

INCREASED USER INTERACTION

DIMENSIONAL MEASUREMENT

- 6 measurements/specimen
- ~42 keystrokes/specimen
 10 TESTS = 420 KEY STROKES

SPECIMEN INSERTION/ REMOVAL

- Time spent aligning by eye
- Grip closing time is longer

EXTENSOMETER ATTACHMENT/ REMOVAL

- Time spent aligning by eye
- Time to pause test to remove

MINIMIZED USER INTERACTION

- 6 measurements/specimen
- ~7 keystrokes/specimen
 10 TESTS = 70 KEY STROKES

- Specimen inserted quickly and easily with alignment devices
- Grips close quickly

- Attaches aligned every test
- Automatically removes without pausing

Time Savings Investment vs. Effectiveness

Non-Rob

PNEUMATIC GRIPS

AUTOMATIC EXTENSOMETRY

INTEGRATED MEASUREMENT

-BLUEHILL® UNIVERSAL -

EFFECTIVENESS

COST

TESTING STANDARDS

ASTM D790

What's Changed?

- Latest Revision in 2017
- Most equivalent to ISO 178 but not technically equivalent

ASTM D790

	TYPE I VERIFICATION	ASTM E2309 Class D	ASTM E2309 Class B
--	---------------------	--------------------	--------------------

NOTE 10—Machine compliance correction may be applied to correct fo	r
lost motion and deflection in the load frame, drive mechanism, load senso	r
TYPE II VERIF and other elements in order to give a more precise measurement of the	ss B-2
deflection of the test specimen. Many manufacturer's machines and/o	r
software packages perform this machine compliance correction. Appendix	K
X1 also provides a means of determining the compliance correction.	

THE IMPACT

ASTM D882

What's Changed?

- Latest Revision in 2018
- Most equivalent to ISO 527-3 but not technically equivalent

ASTM D882

HOW WILL THESE IMPACT YOU?

ISO 527-3

What's Changed?

- Latest Revision in 2018
- Most equivalent to ASTM D882 but not technically equivalent

ISO 527-3

Figure 4 — Specimen type 4

HOW WILL THESE IMPACT YOU?

ASTM D638

Just an update!

- Latest Revision in 2022
- Most equivalent to ISO 527-1,2 but not technically equivalent
- Adding an annex for testing additive manufactured specimens
- This will create an amendment to the standard when it gets added

ASTM D638/ISO 527 Yield Point

STRAIN FIG. A2.3 Tensile Designations

Key

X strain and/or nominal strain

Y stress

- 1 Curve (1) represents a brittle material, breaking without yielding at low strains. Curve (4) represents a soft rubberlike material breaking at larger strains (>50 %).
- 2, 3 Curves (2) and (3) represent materials that have a yield point with (2) or without (3) stress increase after yielding. Curves (2) and (3) are curves "stress vs. strain" up to the yield point and "stress vs. nominal strain" beyond the yield point.
- 4 Curve (4) may be either stress vs. strain or stress vs. nominal strain depending on equipment used.

ASTM D638/ISO 527 Nominal Strain

No Yield

- Width
- Thickness
- Modulus of Elasticity
- Secant Modulus
- Tensile Strength
- Percent Elongation
- **Percent Elongation at Yield**
- **Percent Elongation at Break** Nominal Strain at Break

Yield

- Width
- Thickness
- Modulus of Elasticity
- Secant Modulus
- Tensile Strength
- **Nominal Strain**
- Nominal Strain at Yield

Most Recent Standard Revisions

<u>ASTM Standards:</u> ASTM D638 (2022) ASTM D695 (2015) ASTM D790 (2017) ASTM D882 (2018) ASTM D1708 (2018) ASTM D3574 (2017) ASTM D6272 (2017) <u>ISO Standards:</u> ISO 178 (2019) ISO 527 – 2 (2012) ISO 527 – 3 (2018) ISO 604 (2002)

The 3 Challenges in Plastics Testing – Melt Flow

COMPLIANCE | VARIABILITY | EFFICIENCY By Stephanie Williams

CONTENTS

- Melt Flow Testing
 - What it is
 - How it is done
- TESTING STANDARDS
 - Changes in Key Standards

TEST RESULTS

- Factors that Influence Results & Solutions
- Troubleshooting

INCREASING LABORATORY EFFICIENCY & THROUGHPUT

Factors that Influence Test Time

Disclaimer

The following document was written as a guide and is not intended to replace the respective test standards covered. This document is designed to summarize the main changes of certain standards related to materials testing equipment. It by no means includes all changes. Any errors in this documentation are not the responsibility of Instron. It is important that you own an official and current copy of all standards used to ensure you're in compliance with the standards.

Melt Flow Testing

What is Melt Flow testing?

Test that determines the flow rate of a polymer material in its molten state under specific load/temperature conditions

All content remains the intellectual property of Instron. Copying and distributing is strictly prohibited.

Melt Flow Testing

Basic test Procedure:

- ✓ Preheat Test Barrel, Piston & Die
- ✓ Insert the Polymer Sample
- ✓ Apply the Test weight
- $\checkmark\,$ Measure the amount of sample extruded
- ✓ Calculate the MFI Value = grams/10 min

Input Parameters:

- ✓ Geometry: Specified die/nozzle
- ✓ Material
- ✓ Temperature
- Weight: Specified mass

Melt Flow Testing

Melt Flow Testers are standards driven in their design. The standards define the:

- Size of the cylinder bore
- Size of the die and the orfice in the die
- Piston & landing foot of the piston
- Temperature Control System:

TESTING STANDARDS

Melt Flow Test Standards

General standards for all materials:

- ASTM D1238, Method A, B, C and D
- ISO 1133-1,-2, Procedure A, B

For specific materials:

- ASTM D3364 (for PVC)
- .. plus all individual material standards (e.g. ISO 1872-1 for PE, ISO 2580-1 for ABS, ...) specifying key parameters but referring to the general ones for machine construction and method settings

ASTM D1238

What's Changed?

- Latest Revision in 2023
- Covers same subject matter as ISO 1133 but differs in technical content.
- Allows for use of load cell to apply force to specimen.

ISO 1133-1, -2

What's Changed?

- Latest Revision in 2022
- Reference for most local standards on MF tests worldwide
- Similar to ASTM D1238 but differs in technical content.

ASTM D1238 (2023) VS ISO 1133-1,2 (2022)

Test Procedure allows application of test weight by dead-weight stack OR a force/load	Test Procedure	Test Procedure allows application of test weight by dead-weight stack OR a force/load
Defines specific Procedure D with details and prescriptions	Procedure for multi- weight tests	Just mentioned
Mentions die plugging and piston holder, defines specific Procedure C with half die	Procedure for high- flow materials	Mentions die plugging and piston holder, half die is allowed
Start 46 mm above die, measure length 1 inch or 1/4 inch depending on expected MFR value	Typical measure start point and length	Start 50 mm above die, measure length 30 mm
Maximum absolute deviation, defined for all materials and as a function of different temperature ranges	Temp. accuracy & consequently verification, calibration	Max abs. dev. plus (strict) maximum difference from min to max actual temperature along the barrel, required only for sensitive materials but applied flat to whole working range

= Significant impact

TEST RESULTS

Why are my results inconsistent?

Key Factors that influence test results

 $rac{1}{2}$ = most common sources of issues

Checklist: Reducing Sources of Error

Are you using the correct test procedure recommended for your sample?

✓ Does the equipment meet the standard requirements? Is it calibrated?

✓ Is the preheat time 7 ± 0.5 min?

Is the piston cold? Is there > 5 min interval between 2 test runs?

All content remains the intellectual property of Instron. Copying and distributing is strictly prohibited.

Checklist: Reducing Sources of Error

- Are you using the right amount of sample based on your expected MFI value per standard?
- ✓ Do your test results vary with operator?
 - Non uniform compaction
 - Imprecise extrudate cuts (Method A)
- Are you using Density or Melt Density values for your calculating MFR?
- Is your equipment (barrel, piston & die) cleaned thoroughly after every test run?

Additional Factors affecting Melt Index Values

Polymer material Degradation due to UV/storage times

INCREASING LABORATORY EFFICIENCY & THROUGHPUT

How much time can you gain?

The difference is measurable

TYPES OF SET UP

Manual

Automatic

Compacting

- Controlled Compacting
 - Better reproducibility and less scattering of results
 - No physical effort required by operator (reduces risk of injury)

50

PURGING

Automated removal of excess material in the barrel immediately after the test.

CLEANING

Motorized Mass Lifter

Manual Mass Selector

High Flow Rate Materials

MULTIPLE LICENSE SOLUTION

If you need to manage multiple MFi instruments in a laboratory from a central node

INSTRON

Most Recent Standard Revisions ASTM Standards: ISO Standa ASTM D1238 (2023) ISO 19062 (2019) ASTM D3364 (2019) ISO 19065 (2019) ASTM D4000 (2023) ISO 19066 (2019) ASTM D5947 (2018) ISO 21301 (2019)

ISO Standards: ISO 19062 (2019) ISO 19065 (2019) ISO 19066 (2020) ISO 21301 (2019) ISO 21302 (2019) ISO 21305 (2019) ISO 24026 (2020) ISO 29988 (2018) ISO 24022 (2020)

Thanks for Joining Us

Sammi Sadler Applications Engineer @ Instron

Stephanie Williams Senior Product Specialist @ Instron

To Learn More or Contact Us Visit www.instron.com

Thank You for Listening