

MULTIDRIVE: RHEO-DMA PLATFORM FOR EXTENDED POLYMER ANALYSIS

Educational Webinar

March 24th 2020

Abhishek Shetty,

Anton Paar USA

Outline

- PART 1 ---- Introduction: DMA
- PART 2 ---- Unique Design Concept: Combined Linear-Torsional DMA
- PART 3 ---- Application: Composite industry (From Rheology to DMA on one device)

What is Dynamic Mechanical Analysis (DMA)?

Thermal analysis: study of how material properties change with temperature (thermal transitions)

DMA: measurement of viscoelastic material properties.

Changes with temperature indicate thermal transitions e.g. **glass transition temperature**.

Detailed knowledge about these properties is relevant for many practical applications

Thermal Analysis Techniques

Advantage of DMA:

Allows measurement of weak **thermal transitions** which are *not at all or only with great difficulty* detectable using other thermal analysis techniques

Dynamic Mechanical Analysis Principle

Webinar - New developments in DMA

Dynamic Mechanical Analysis Principle

- Stress $\sigma(t) = \hat{\sigma} * \sin(\omega t)$ ---- Strain $\varepsilon(t) = \hat{\varepsilon} * \sin(\omega t - \delta)$

Viscoelastic Moduli

Complex Modulus E* [Pa]

• "Dynamic" modulus

Storage Modulus E' [Pa]

- Elastic contribution
- Stored deformation energy

Loss Modulus E" [Pa]

- Viscous contribution
- Dissipated deformation energy

Loss Factor tan δ [-]

- Dimensionless damping factor
- 'Index of viscoelasticity'

Selection of DMA Deformation Mode

DMA Thermograms of Different Polymers

Overview of Typical Examples

DMA Test Types Amplitude Sweeps

DMA Test Types Frequency Sweeps

$$F = var.$$

 $\hat{\epsilon} = \text{const. or } \hat{\sigma} = \text{const.}$

Frequency f

DMA Test Types Temperature Ramps

DMA Test Types Further Possibilities

Time-Temperature Superposition

• to predict viscoelastic properties over a very wide range of frequencies

Time Sweeps

• to investigate time-dependent processes (e.g. curing, degradation)

Humidity Sweeps

• to investigate viscoelastic behavior as a function of relative humidity

Immersion Tests

• to monitor viscoelastic properties of a sample while immersed in liquid media

UNIQUE DESIGN CONCEPT AND FEATURES

MCR 702 MultiDrive

Instrumentation

Anton Paar MCR 702 MultiDrive

DMA Deformation Modes

MCR 702 MultiDrive – DMA and more

Dynamic mechanical TwinDrive rheometer Single-drive rheometer analyzer

Universal Platform for Rheology and Dynamic Mechanical Analysis

Webinar - new developments in Divia

MCR 702 MultiDrive – CTD 600 MultiDrive Ready

Electrically Heated Convection Oven

- State-of-the-art temperature control due to innovative 3D metal printing technology.
- Homogenous temperature distribution and stable temperature control for all measuring systems.
- Extensive temperature range -160 to 600 °C
- Low temperature options with LN₂ or gas chiller
- Integrated sample illumination
- Suitable for all measuring systems (DMA, Shear, Extensional)

MCR 702 MultiDrive – CTD 600 MultiDrive Ready

T-Gradient Minimization by CFD Simulations

- 3D printed parts (SLM) enable perfectly guided gas flow.
- Minimization of temperature gradients in the sample.
- CFD-optimized design for lowest possible temperature gradients within the sample
- Visualization with camera possible.

Anton Paar

CTD600 - DigiEye

- Field of view ≈ 50 mm diameter
- Compatible with all measuring geometries
- Observation of effects like edge fracture, sagging, stringing, necking, optically visible phase transitions, degradation, gap emptying and overfilling
- Pictures and videos can be synchronized with rheological data.

Gap overfilling in a PP system

Stringing in a tack test

Gap emptying in a flow test

Webinar – New developments in DMA

Anton Paar

CTD600 - DigiEye

Heating Rate: 3.0°C/min

Semi-Crystalline Polyethylene

Opaque at low temperatures (T < T_m) Transparent at high temperatures (T > T_m) Temperature ramp from 70°C to 125°C

SRF measuring geometry

Homogenous heating of the sample

Homogenous temperature distribution within the sample, even at higher heating rates

MCR 702 MultiDrive – DMA Measuring Systems

Optoelectronic technology for most precise temperature measurements

- Contact-free data and energy transfer between motor and moving measuring system.
- Based on light emission with LED and photoelectric effect using photodiodes.
- No impact on torque sensitivity in comparison to contact free transmission technologies based on induction and disturbing magnetic fields.
- Patent proposal already submitted.

MCR 702 MultiDrive– Zero Drift in Force Measurement

MCR 702 MultiDrive – Error Proofing Ease of Use

Quick Connect Coupling:

- Easy Fitting of Measuring Systems.
- Ensures fast, convenient system changes without the use of a screwing mechanism (no tools required!).

<u>ToolMaster™ :</u>

- Transponder chips in all accessory control cables and in the measuring systems contain all relevant data (such as name, type, geometrical dimensions, factors necessary for calculations, serial number etc.,).
- No more errors due to wrong measuring system selection.

Zero Gap and Angle Setting

- Fully automatic procedure is based on high precision lift motor (stepper motor) and angular movement of the upper rotational measuring drive.
- Highest precision, perfect alignment every time.
- No zero-gap needed after removal for cleaning.

MCR 702 MultiDrive – QuickConnect Coupling

QuickConnect Coupling

Easy Fitting of Measuring Systems

- One-hand connection of measuring systems possible
- Ensures fast, convenient system changes without the use of a screwing mechanism (no tools required!)
- Integrated Toolmaster™ functionality
- Highest precision, perfect alignment every time
- No zero-gap needed after removal for cleaning
- Available for both upper and lower drive unit
- Part of the inherent MCR error proofing

MCR 702 MultiDrive – Zero Angle Setting

•		H-H
remain insur Ritection	*2045*	
function *	Control Panel - 702 MD USB	MCR 702 MultiDrive SN00000
	Temperature [2] (CTD600L+R+P1100): 24.21 °C Gap: 9.999 mm Sensor Force: 0.00 N	Initialize Set zero-gap Reset force C C C C C C C C C C C C C C C C C C C
		Set LIN position: Central Status: Positioned Moving profile: Bending TPB, central *
	Temperature (CTD600L+R+Pt100): *C Current light intensity: Step 3 CTD600L+R+Pt100	Set value Switch off Dim light

MCR 702 MultiDrive in the Composite Industry

From the **Rheology** of an uncured RTM6 Epoxy Resin to **the Dynamic Mechanical Analysis** of the cured component

Applications: Composites

Resin Transfer Molding (RTM)

Sample: Epoxy matrix RTM 6

• RTM is based on a closed-mold process that has shown promise during last several years for manufacturing high performance composite.

•In this context, the epoxy resin **RTM6** is largely used in the manufacturing of carbon fiber-reinforced composites for aeronautic and space industries.

• Process starts from a uncured resin- goes through curing to the final cross linked product.

Capturing the full story of Epoxy production

Rheology

- -- Investigate time dependent flow properties.
- -- Study macro-kinetics of the cure reaction.
- -- Study the effect of the curing parameters on the cross-linking density

DMA

- -- Effect of curing on final cured product
- -- Determine Moduli (both in axial and torsional modes)
- -- Determine Glass transition temperature.

Rheology: Probing RTM6 Curing

Multiwave Rheometry: Gel-point determination

- The classical crossover method used to determine the gel-point is frequency and therefore time-dependent.
- Gel-point is strictly a material property and therefore is frequency independent.

Rheology: Probing RTM6 Curing

Multiwave Rheometry: Gel-point determination

- The time of crossover slightly different for each of the frequencies studied.
- The crossover point approaches the real gel point as the frequency decreases.

Rheology: Probing RTM6 Curing

Multiwave Rheometry: Gel-point determination using the Winter-Chambon Criterion

- Winter-Chambon criterion: $G'(\omega) \sim \omega^n$ and $G''(\omega) \sim \omega^n$
- The ratio of $G''(\omega)/G'(\omega)$ should be independent of frequency.
- Using the Winter Chambon criterion the cure point was determined.

Rheology: behavior during the cure reaction

Multiwave Rheometry: Gel-point determination using the Winter-Chambon Criterion

- Extrapolation of the crossover point in the limit f → 0 provides a good approximation of the real gel point obtained by Winter-Chambon criterion.
- Multiwave tests are very advantageous for curing tests.

Measurements in three point bending mode

- Test conditions used:
 - Three point bend geomtery: L-TPB40 (free lenght: 40 mm)
 - Sample size: 50 x 10 x 2 mm
 - Static force= 0.5 N
 - Dynamic force = 0.3 N
 - Frequency= 1 Hz
 - Temp 25°C to 250°C
 - Heating rate: 2 °C/min

Measurements in three point bending mode

- The glass transition temperature Tg can be evaluated from the temperature-dependent functions of E' and E" according to different standard norms
- According to the ISO 11357 E' step method, for instance, Tg onset, mid and end temperatures were found to be 195.5 °C, 202.5 °C and 206.9 °C, respectively
- According to ASTM D4065, D4092, Tg is calculated as the maximum in the loss moduli. Accordingly, Tg = max(E") = 203.9 °C

Measurements in three point bending mode

- Sub-glass transition ($T_{\omega} \sim 95$ °C) can be identified from a small distinct drop.
- E" thermograph shows a wide dissipation peak at a temperature between 50 and 100 °C.
- Sub-glass transition relaxation has been attributed to molecular arrangements resulting from moisture absorption or motions of the pphenylene groups in the sample.
- DMA much more sensitive than TMA or DSC.

Measurements in Torsion Mode

- Test conditions used:
 - SRF 5 (solid rectangular fixture)
 - Sample: 40 x 10 x 1 mm
 - Strain Deformation = 0.01 %
 - Frequency = 1 Hz
 - Normal force = -0,2 N
 - Temp 25°C to 250°C
 - Heating rate: 2 °C/min

Measurements in Torsion Mode

- Glass transition temperature T_g was evaluated according to different criteria.
 - T_g onset according to ISO 11357 = **191.5** °C
 - T_g according to ASTM D4056
 = 208.5 °C
 - T_g according to ASTM E1640
 = 223.9 °C
- The measurements for the storage modulus are in very good agreement with the Literature.

DMA

Dynamic Mechanical Analysis

Comparison between Torsional and Bending measurements

Poisson ratio determination from Torsional and Bending measurements

•

•

• **Poisson's ratio (***v***),** can be defined for an isotropic material as

$$\nu = \frac{E}{2G} - 1$$

- The abrupt decrease in the Poisson's ratio coincides fairly well with the temperature glass transition ($T_g = 194^{\circ}C$)
- The experimentally measured Poisson's ratio for the RTM 6 sample is in very good agreement with other data from literature.
- A simple way to obtain insights about Poisson ratio from two temperature sweeps in torsion and bending modes.
- Generally two devices are needed to do this.

Summary

- Viability of a MCR 702 Multidrive device with different peripherals and unique features to perform rheology and DMA on one device has been shown.
- Capturing the fully "story" of an epoxy resin RTM6 starting from the evolution of its uncured state (Rheology) up to the DMA of the cured resin was demonstrated.
- The rheological study including the polymerization of the uncured resin was studied using a Multiwave approach according to Winter-Chambon criteria in order to characterize the gel-point.
- The DMA of the cured product was performed with an additional lower linear drive coupled to the MCR 702 Multidrive.
- The linear drive in combination with the EC-Motor permitted us to measured the Poisson's ratio as a function of temperature for the cured epoxy resin.

References

- Tschoegl, N.W., Knauss, W.G. & Emri, I. Poisson's ratio in linear viscoelasticity a critical review. Mechanics of Time-Dependent Materials 6 (2002): 3-51.
- Greaves, G. N., Greer, A. L., Lakes, R. S., & Rouxel, T. (2011). Poisson's ratio and modern materials. Nature materials, 10(11), 823.
- Mohan P, (2013) A critical review: the modification, properties and applications of epoxy resins. Polym.-Plast. Technol. Eng 52:107-125.
- Merad L, Bourson P, Guedra Y, Jochem F, Benyoucef B, (2012) Kinetic study of the RTM6/TiO2 by DSC/TGA for improved hardness of resin. Journal of the Association of Arab Universities for Basic and Applied Sciences 11: 37.44.
- Causse N, Benchimol S, Martineau L, Carponcin D, Lonjon A (2015) Polymerization study and rheological behavior of RTM6 epoxy resin system during preprocessing step. Jounal of Thermal Analysis and Calorimetry 119:329–333.
- Appleby-Thomas G J, Hazell P J, Stennett C (2009) The variation in lateral and longitudinal stress gauge response within a RTM6 epoxy resin under one-dimensional shock loading. Journal of Materials Science 44:6187-6198.
- Saunders K J (1988) Organic Polymer Chemistry, Second Edition. Chapman & Hall, London.
- Holly E E, Venkatarman S, Chambon F, Winter H H (1988) Fourier transform mechanical spectroscopy of viscoelastic materials with transient structure. Journal of Non-Newtonian Fluid Mechanics 27:17.
- Chambon F and Winter H H (1987) Linear viscoelasticity at the Gel Point of a Crsosslinking PDMS with Imbalanced Stoichiometry. Journal of Rheology 31:639.
- Higham A K, Garber L A, Latshaw D C, Hall C K, Pojman J A (2014) Gelation and Cross-Linking in Multifunctional Thiol and Multifunctional Acrylate Systems Involving an in Situ Comonomer Catalyst. Macromolecules 47:821-829.

References

- Terekhina S, Fouvrya S, Salviaa M, Bulanov I (2010) An indirect method based on fretting tests to characterize the elastic properties of materials: application to an epoxy resin RTM6 under variable temperature conditions. Wear 269:632–63729.
- Maxwell IA, Pethrick RA (1983) Dielectric studies of water in epoxyresins. J Appl Polym Sci 28(7):2363–237931.
- Mikols WJ, Seferis JC, Apicella A, Nicolais L (1982) Evaluation ofstructural changes in epoxy systems by moisture sorption– desorption and dynamic mechanical studies. Polym Compos 3(3):118–124 (21).
- Ochi M, Yoshizumi M, Shimbo M (1987) Mechanical and dielectricrelaxations of epoxide resins containing the spiroring structure. II.
 Effect of the introduction of methoxy branches on low-temperature relaxations of epoxide resins. J Pol Sci B Pol Phys 25(9):1817–1827 (21).
- Frontini P, Loftian S, Monclus MA, Molina-Aldareguia J (2015) High Temperature Nanoindentation Response of RTM6 Epoxy Resin at Different Strain Rates. Exp Mechanics 55(5): 1-12.
- The MCR Multidrive in Composite industry: Anton Paar Application report (2019).
- Kim S Y, Choi D G, Yang S M, (2002) Rheological analysis of the gelation behavior of tetraethylorthosilane/ vinyltriethoxysilane hybrid solutions. Korean Journal of Chemical Engineering 19:190–196.

THANK YOU FOR YOUR TIME Email: abhi.shetty@anton-paar.com

Want to learn more about DMA applications? Go to www.anton-paar.com!

Anton Par

Document Finder

Looking for a specific document? Find it here.

Your choice: Dynar	nic Mechanical Ana	lysis x Dynamic	Mechanical Analyzer:	MCR 702 MultiDrive	x Applicatio	n Reports x	Reset all filters x
Product group	~	Products	~	Industry	~	Categories	~
L Characterization	of Shape-Memory	Materials	Application Repo	rts		en	
Characterizing Dy Composites	ynamic Mechanica	I Properties of Carbo	n Fiber Reinforced	Application Repo	rts		en
🛓 Efficient Creep In	Efficient Creep Investigation of Wood-Plastic Composites in Bending Mode				rts		en
Frequency Deper Reinforced Polym	ndence of Glass Tr ners and Acrylonitr	ransition Temperature ile Butadiene Styrene	s for Fiberglass-	Application Repo	rts		en
🛓 How to Prevent S	ample Slip in Tens	sile DMA Measureme	nts	Application Repo	rts		en
Influence of Differ Elastomers	rent Carbon Black	Contents on the Mec	hanical Properties of	Application Repo	rts		en
Moisture-Dependent Viscoelastic Properties, Creep Behavior and Hygroscopic Expansion of Polyamide 6				Application Repo	rts		en
🛓 The MCR MultiDr	ive in the Compos	ite Industry		Application Repo	rts		en
🛓 Thermal Propertie	es of Polymer Bler	ids		Application Repo	rts		en
Understanding 30 Rheology to Mechanic) Printing of Polye hanical Properties	ther Ether Ketone (PE of the Printed Part	EEK): From Melt	Application Repo	rts		en