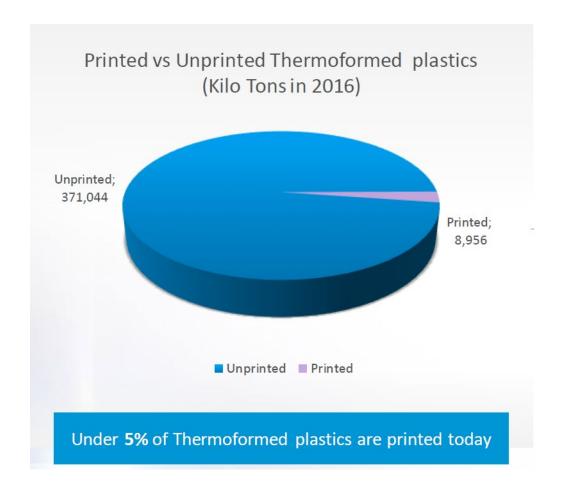


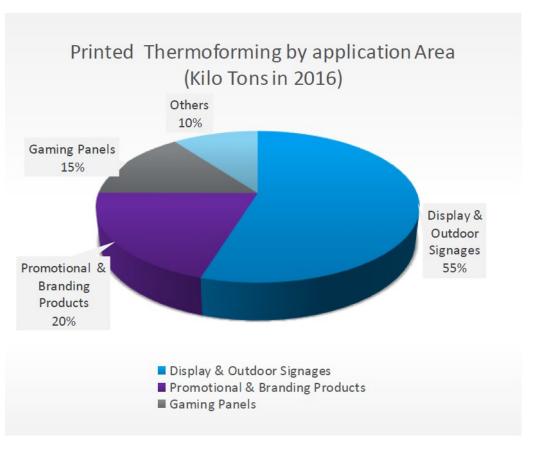


Thermoforming goes digital: New opportunities with HP Latex Inks

Thomas Giglio — HP Inc. October 20, 2021




# Printed Thermoforming market by application area








### Printed versus unprinted





Most of this is decorated manually or screen printed!!





# Entry into new markets, constantly reinventing yourself

### Outdoor Signage





Outdoor signage typically printed on polycarbonate

### Gaming



Backlit signage typically printed with white ink onto PETG

### Point-of-Purchase



Indoor signage printed on styrene, PVC and acrylics

### Industrial



Various substrates such as ABS, modified acrylic and polycarbonate





## Analog printing and digital printing comparison - technology



- Long set-up time/process for first print
- Economy grows with longer print runs
- Multiple iterations for distortion printing
- Multiple/custom ink options
- Ceiling on image quality



- Fast first print, no setup time
- Instant-dry prints, ready to form
- Short run costs are minimal
- Sustainable printing
- Higher image quality





# Analog printing and digital printing comparison – market opportunity

| Market                                                 | Analog Printing | Digital Printing |
|--------------------------------------------------------|-----------------|------------------|
| Many customers have faster GTM (go-to-market) modeling | X               | ✓                |
| Customers demand shorter, more targeted runs           | X               | ✓                |
| Versioning and custom color combinations               | X               | ✓                |
| Long runs with one universal message                   | ✓               | X                |
| Use of photography (4-color process)                   | ✓               | ✓                |
| Branding/messaging can be spread across many mediums   | ✓               | ✓                |





### Common ink types involved in thermoforming today



### Conventional: Screen printing inks

- Both UV and solvent versions
- Inexpensive compared to digital inks
- Colors are mixed and thinned
- HAPs and VOCs are higher than digital



#### Digital: UV and Solvent/Eco-solvent inks

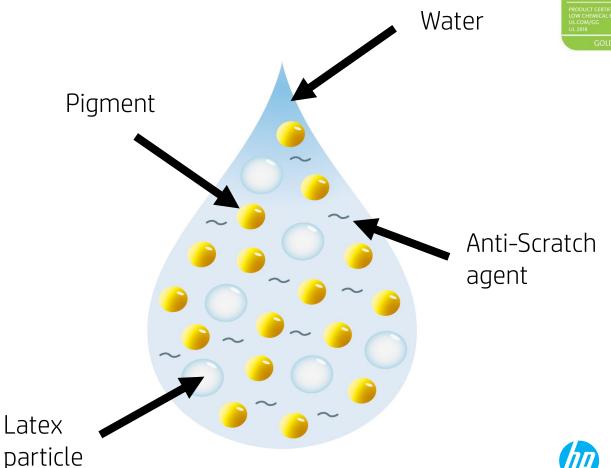
- "Special" ink sets
- Excellent adhesion
- Choice points" adhesion, density or gamut
- Density is a problem tradeoffs
- UV inks can re-wet, block and crack/craze
- Costly piezo print heads



### Digital: HP Latex inks

- "Universal" Water-based ink, including white ink
- No reactive monomers
- High pigment loads for a digital ink
- Excellent elongation
- Inexpensive thermal print heads
- Thin ink film thickness
- No ventilation needed






### Deep-dive into HP Latex ink technology

# **ROADMAPTO**

### Heat evaporates water and encapsulates the pigment into a latex film

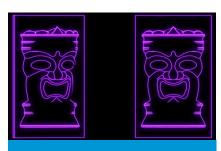
- HP Latex Inks contain between 60-70% water
- Once the vehicle is evaporated, heat (about 150-deg F cures the co-polymer (resin)
- An inline optimizer is placed between the substrate and ink to allow for image quality and fixing of dot placement.
- An optional overcoat can be applied for handling and minimal durability





# Anatomy of an HP Latex printed part used in thermoforming








### Distortion printing process

#### Overview





Create 3D model that will be used for creating the mold and artwork



Create the mold and mount to a vacuum box on the thermoformer



Use the 3D file and create artwork in pre-press



Use grid to align artwork to the mold



Print the artwork on an R Series printer!



If needed, coat the materials with a roller coater



Printed parts are thermoformed

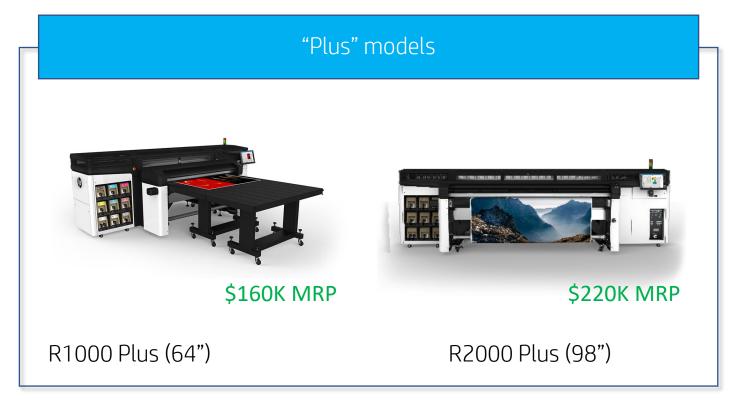


If needed, parts can be finished with a router or robot



## Distortion printing process






Printing time = about 350 ft<sup>2</sup>/hour Material = .060" Digi HIPS (styrene) 3 versions, 100 each quantity Ink cost was about \$0.25 per ft<sup>2</sup>





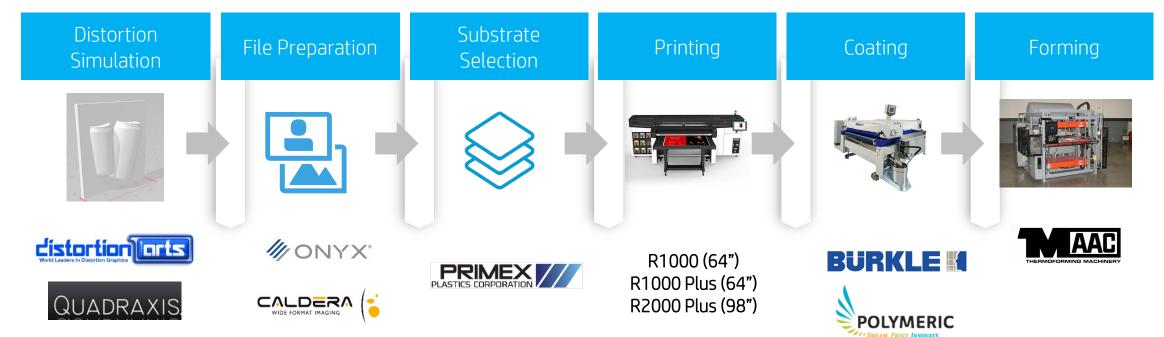
# HP Latex R Series The first HP Latex rigid printers



Includes: white ink option, roll-to-roll option, extra set of extended tables and 18-month warranty



# Where to start Transitioning to digital


- Learn as much as possible from HP and SPE experts
- Arrange a demo to see the printing process
  - Facilities nationwide and in Canada
  - Spec project using all components (benchmarking)
  - Capture metrics/costing information
- Work with consultants on e2e solution:
  - Markets
  - Workflow
  - Facilities/physical plant space
  - Labor considerations
  - Finishing



## HP Latex Thermoforming ecosystem

An open end-to-end system for optimum customer adaptation











# Best practices for moving forward

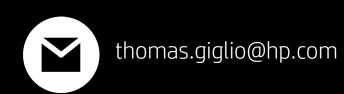


- Going digital is not that hard if aligned with the right technology and enablers in the ecosystem
- 2. Determine what digital can do for you now but more importantly what it can do for the future!
- 3. HP has a great, innovative and proven solution with many workflow and ecosystem partners.












# Q&A

Thank you - from all of us at HP and our partners

### Find me at:



