

PLASTICS WEATHERING – FROM BASIC PRINCIPLES TO RECENT DEVELOPMENTS IN TECHNOLOGY AND STANDARDIZATION

FLORIAN FEIL

AOWA - ATLAS ONLINE WEATHERING ACADEMY ©2023 ATLAS MATERIAL TESTING TECHNOLOGY LLC, ALL RIGHTS RESERVED ATLAS-MTS.COM

TODAY'S PRESENTER

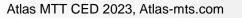
Dr. Florian Feil

- Global Manager Client Education
- Senior Consultant Weathering Technology

+49 6051 707-300

florian.feil@ametek.com

Background:


- Expert in weathering and photo-degradation of materials and products.
- Representing Atlas in Standards Committees (ISO, CEN, DIN, ASTM)
- Chair of ISO/TC 35/SC 9 General test methods for paints and varnishes
- Research on corrosion and corrosion protection at the DECHEMA Research Institute in Frankfurt (2005 2011).
- Postdoc on conducting polymers and electrochemistry at the Ohio State University (2003 2004).
- PhD degree in chemistry on the polymerization of polystyrene block-copolymers at the University of Constance, Germany (2002).

OUTLINE

- Introduction of Atlas
- Factors of Weathering
 - Solar Radiation
 - Heat
 - Moisture
- Weathering testing
 - Natural Weathering
 - Accelerated Laboratory Weathering
- Acceleration and Correlation
- Summary
- Question and answers (time permitting)

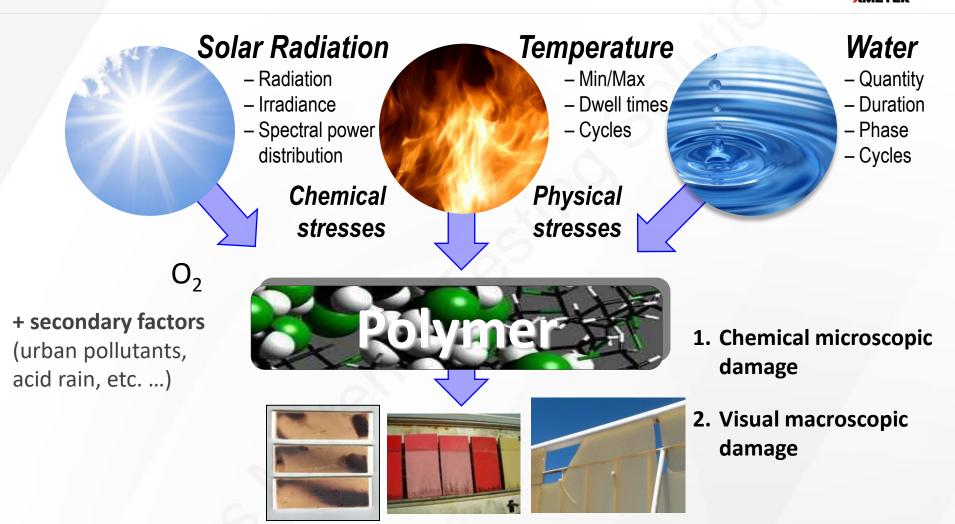
ATLAS MATERIAL TESTING TECHNOLOGY

Over 100 years of weathering testing innovation

Outdoor & Lab Weathering Services

Atlas Custom Systems Larger scale solar simulation

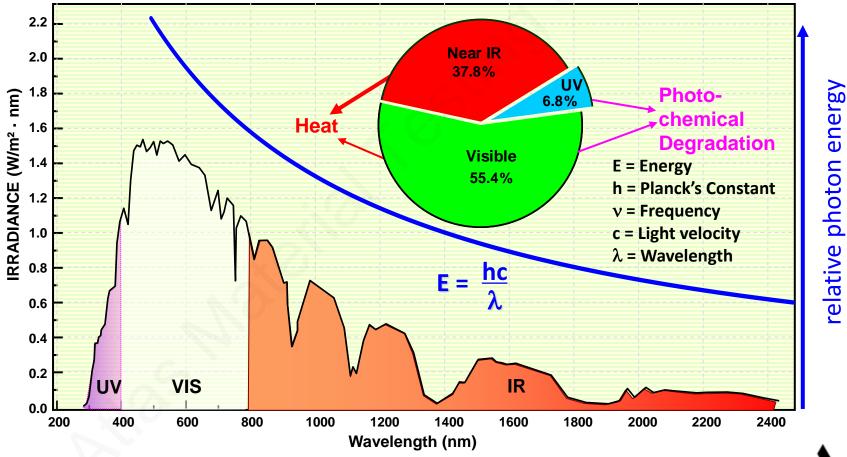
Consulting, Client Education and Standards



Atlas MTT CED 2023, Atlas-mts.com

THE PRIMARY WEATHERING FACTORS

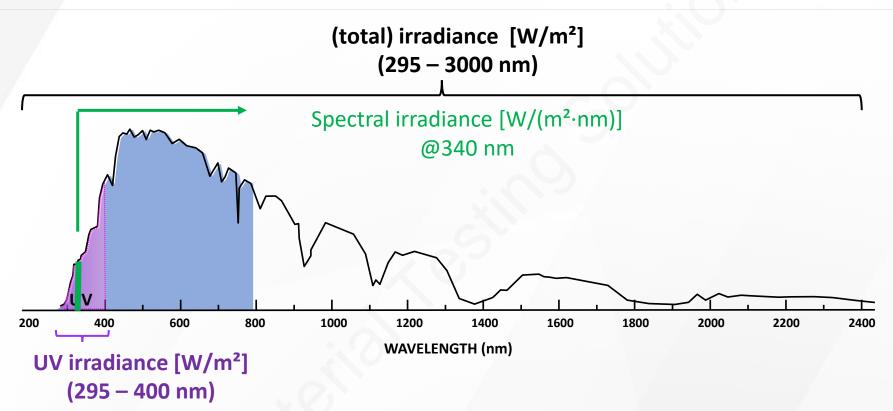
Synergy: "The combined effects are greater than the sum of the parts"



SPECTRAL IRRADIANCE DISTRIBUTION

Reference sun in weathering:

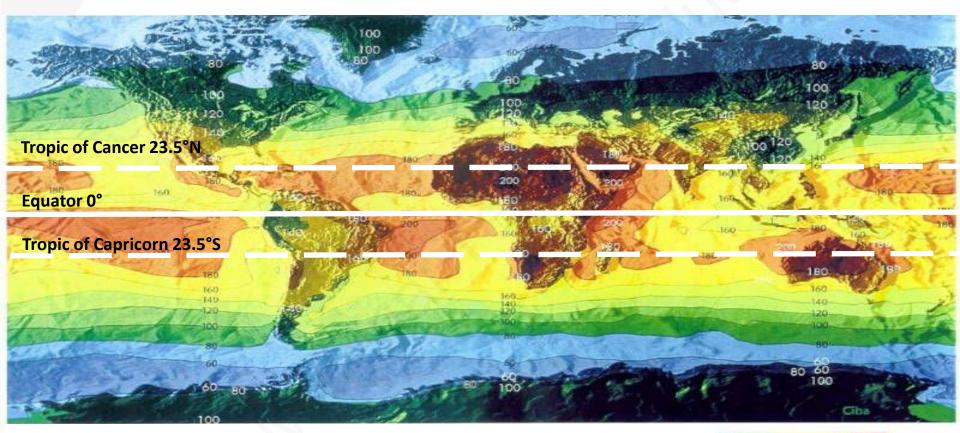
CIE (Commission International de L'Éclairage) CIE 241 (2020) CIE-H-1 (replaces CIE N°85; Table 4); AM1: spectral irradiance when the sun is filtered exactly by one atmosphere.



Atlas MTT CED 2023, Atlas-mts.com

RADIOMETRIC QUANTITIES

АМЕТЕК

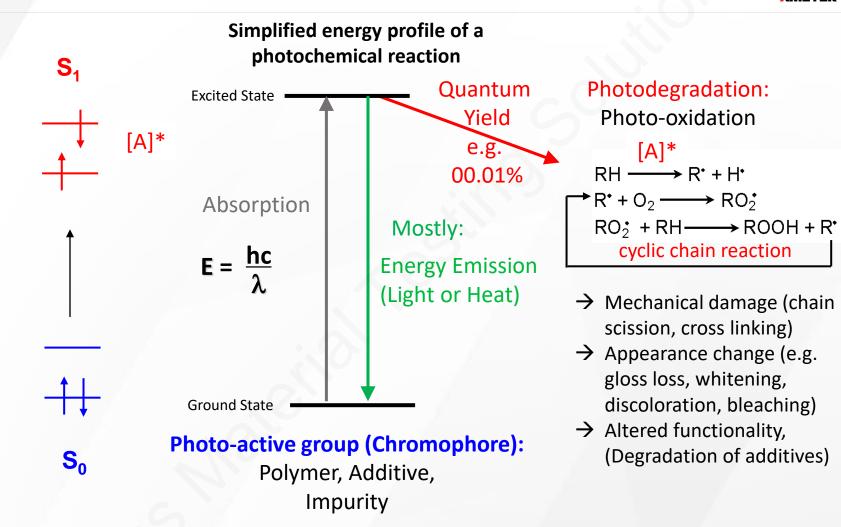

	total (295 – 3000 nm)	UV/Vis (300 – 800 nm)	UV range (295 – 400 nm)	spectral @340 nm
Typical irradiance Values (1-sun level) ^a	1000 W/m²	550 W/m²	60 W/m²	0.51 W/(m²·nm)
Annual radiant exposure in Miami (Ø) ^ь	6665 MJ/m²	3637 MJ/m ²	396 MJ/m ²	3.3 MJ/(m²∙nm)

a) Typical ratios in Xenon instruments; b) Average values (2000-2019) 24 °South.

WORLD RADIATION MAP (PUBLISHED 1998)

AMETEK

Updated and refined by BASF: Gregor Huber, *SKZ Symposium – Weathering in the Automotive Industry; Würzburg 2015-04-15* and *7th European Weathering Symposium EWS, Naples, 2015-09-17.*


56 86 100 120 140 160 180 200 220 alartyr

Data provided by the Surface Radiation Budget Project at NASA Langley Research Center

PRINCIPLE MECHANISM OF PHOTODEGRADATION

Weathering (photochemical) degradation starts by the absorption of a photon and the formation of an electronically excited molecule

Atlas MTT CED 2023, Atlas-mts.com

SUMMARY: EFFECTS OF HEAT

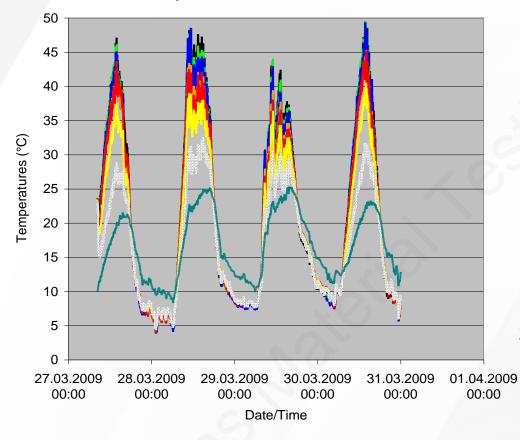
Elevated Sample Temperatures (higher diffusion rate and reaction speed, phase transitions, TG)

Expansion/Contraction

(mechanical tension and compressive stress, migration)

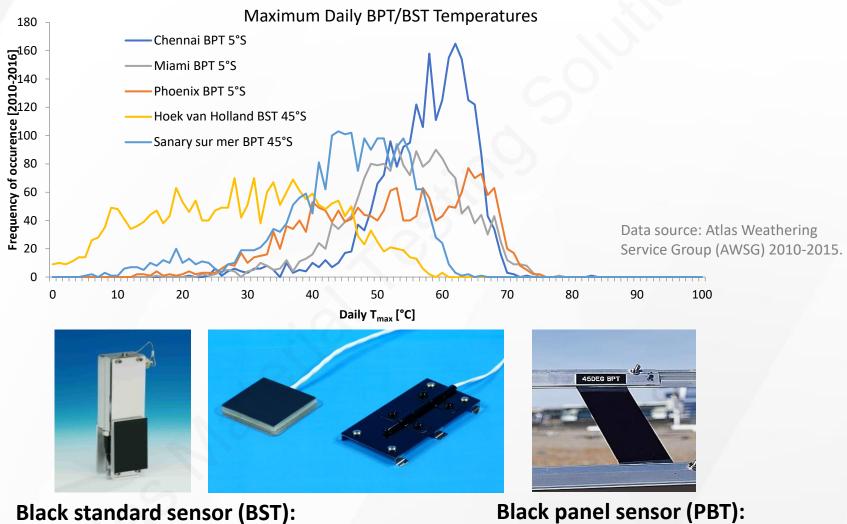
Evaporation/Condensation

(mechanical tension and compressive stress, loss of additives, content of moisture)


Thermal Ageing (additional ageing process)

SURFACE TEMPERATURE OF IRRADIATED COATINGS

Surface temperatures of colored PVC-coated aluminum plates and ambient temperatures in Phoenix, Arizona:


Surface temperature mainly depends on:

- air temperature
- wind speed
- solar and thermal radiation heat (surface color!)
- thermal conductivity of the sample

MAXIMUM DAILY TEMPERATURES

 Black coated stainless-steel plate with insulated back

Black panel sensor (PBT):


- Black coated stainless-steel ٠
- plate without insulated back

EFFECTS OF MOISTURE

- Diurnal and seasonal variation of air humidity [%RH] and surface wetness:
 Absorption/Desorption (mechanical tension and compressive stress, wash out)
- Freeze-thaw cycles (mechanical tension)
- Thermal shock (mechanical tension)
- Erosion (loss of substance)
- Impact (loss of material)
- Chemical (hydrolysis)

Absolute Humidity [g/m³]:

The density of water vapor. It is the mass of the water vapor divided by the volume that it occupies

Relative Humidity [%]:

The amount of water vapor in the air, compared to the amount the air could hold if it was totally saturated.

Dew Point [K]:

14

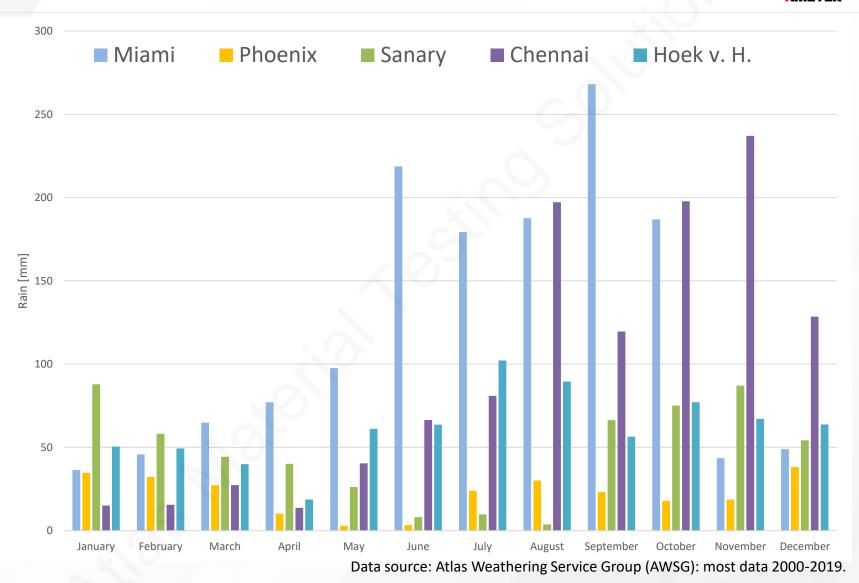
The temperature to which the air must be cooled for water vapor to condense and form fog or clouds (i.e. the temperature where the relative humidity is 100%).

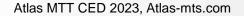
Time of Wetness [%]:

The amount of time an exposed surface is wet by the effects of dew, rain, snow or mist.

QUANTIFYING MOISTURE

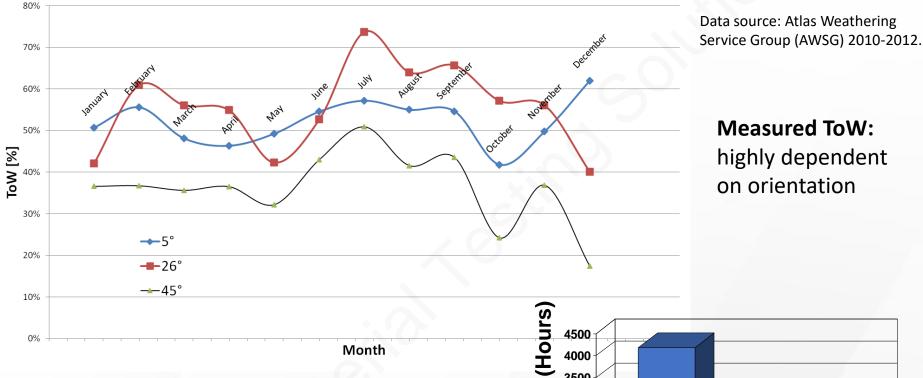
AH

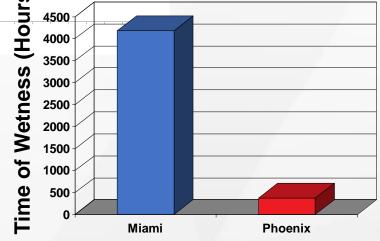

RH

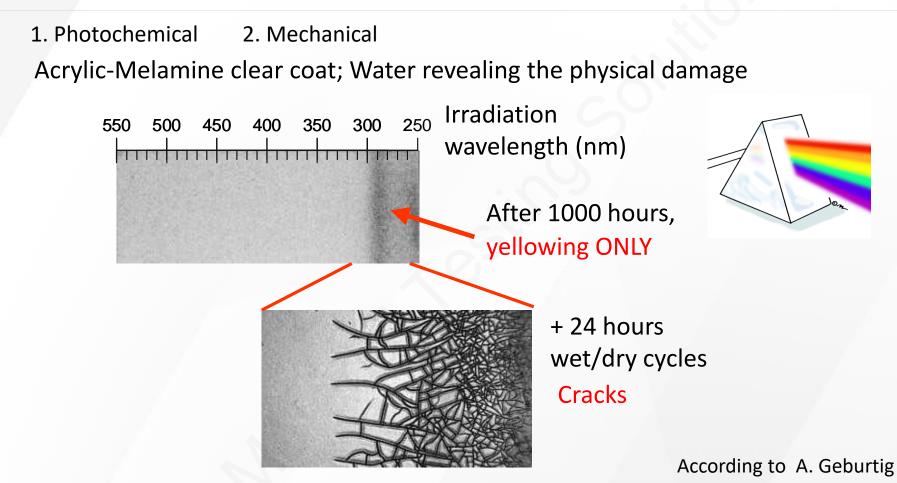

TD

ToW

MONTHLY RAIN AT REFERENCE LOCATIONS



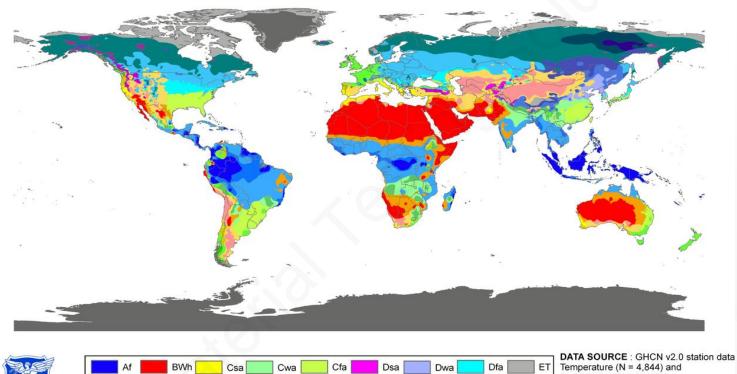

TIME OF WETNESS (TOW)

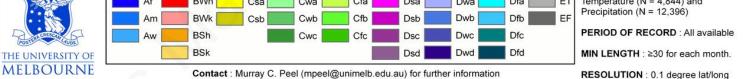

ISO 9223 (2012): Corrosion of metals and alloys - Corrosivity of atmospheres -Classification, determination and estimation

Estimating the time of wetness: TOW; RH > 80%, T > 0° C

EFFECT OF RADIATION AND WATER

Especially the weathering of coatings is influenced by moisture cycles.




CLIMATE REGIONS OF THE WORLD

AMETEK

World map of Köppen-Geiger climate classification

Köppen-Geiger: Classification of climate zones upon their seasonal weather patterns.

OUTLINE

- Introduction of Atlas
- Factors of Weathering
 - Solar Radiation
 - Heat
 - Moisture
- Weathering testing
 - Natural Weathering
 - Accelerated Laboratory Weathering
- Acceleration and Correlation
- Summary
- Question and answers (time permitting)

REFERENCE CLIMATE ZONES

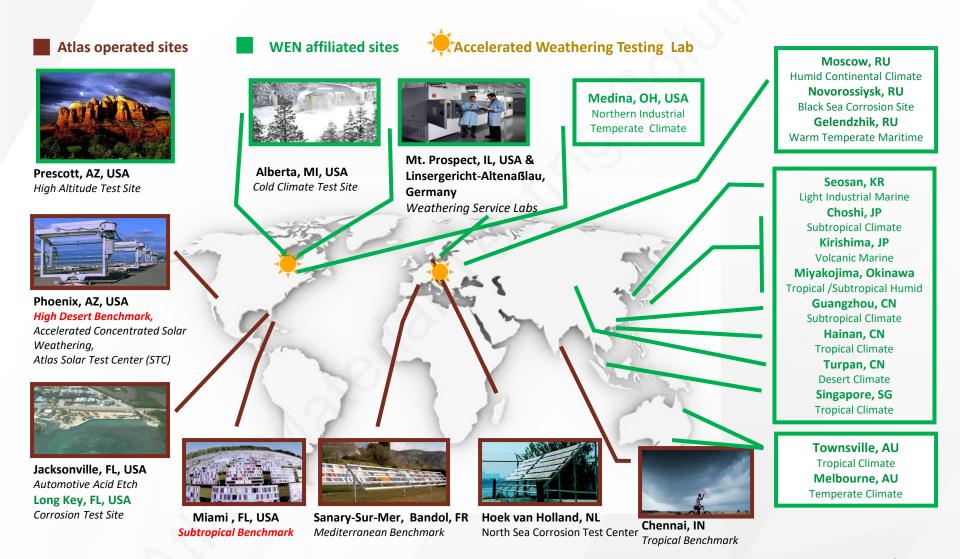
South Florida

- *History: Weathering in subtropical climate*
- Extreme conditions (high UV radiation, warm, humid)
- Inland no coastal influence
- Minimal pollution clean environment

Arizona

- History: Weathering in desert climate
- Extreme conditions (high UV radiation – hot - dry)
- Higher maximum temperatures compared to Florida
- Minimal pollution clean environment

Recognized benchmark weathering sites.



Atlas - DSET

Atlas MTT CED 2023, Atlas-mts.com

ATLAS' WORLDWIDE EXPOSURE NETWORK

www.atlas-mts.com

NATURAL WEATHERING: PLASTICS

ISO 877-2 – Plastics: Methods of exposure to solar radiation – Part 2: Direct weathering and weathering using glass-filtered solar radiation

Method A: Direct - Open backed

Apparatus: specimen rack Method A: design, frame, Materials (inert; Aluminum Alloys, stainless steel, untreated wood in dry climates); adjustable solar altitude (i.e. tilt) and azimuth; Method B: additionally framed cover of window, windscreen or other glass types

- Conditions of exposure: aspect and site
- **Exposure stages**: duration or radiant exposure

Method A: Direct - Backed

Atlas MTT CED 2023, Atlas-mts.com

Also:

ASTM G7 - Standard Practice for Atmospheric Environmental Exposure Testing of Nonmetallic Materials

ASTM G24 - Standard Practice for Conducting Exposures to Daylight Filtered Through Glass

DIRECT WEATHERING

METEK°

90° South Exposure Rack 45° South Exposure Rack 34° South Exposure Rack

Standards:

ASTM G7—Standard Practice for Atmospheric Environmental Exposure Testing of Nonmetallic Materials

ISO 877-1—Plastics: Methods of Exposure to Solar Radiation—Part 1: General Guidance ISO 2810—Paints and Varnishes: Natural Weathering of Coatings—Exposure and Assessment

TYPICAL EXPOSURE CONDITIONS

METEK

ASTM G7, ISO 877-1/2, ISO 2810

Variations:

- by sample orientation (5°, 45°, at latitude, 90°; N/S)
- by sample backing
- by test specimen (flat material panel or component)

Exposure Type	Unbacked	Backed		
5° South	Exterior Materials	Roofing Membranes and other Roofing Materials		
At Latitude	Any Material			
45° South	Powder/Coil Coating, Corrosion Tests	PVC Siding, General Building Materials, Thermoplastics		
90° South	Window Profiles, Trade Sales Panels, Wind Screens	PVC Siding		
90° North	Mildew/Algae/Biofilm Studies			
5° or 45° Underglass	Interior materials, Foam Backed Vinyl, Carpets, Window Coverings, Indoor Flooring, etc.			

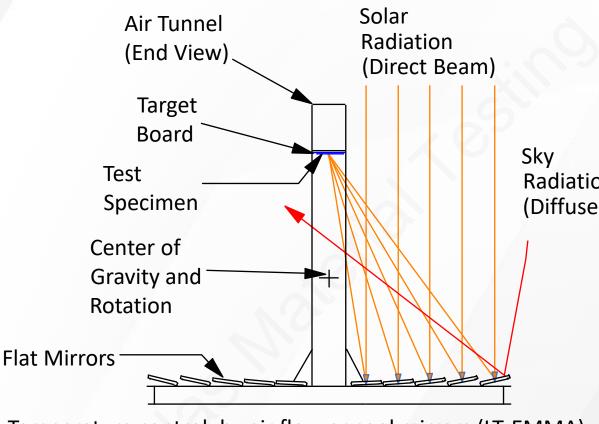
EXAMPLES OF ANNUAL RADIANT EXPOSURES

Typical climates: average radiant exposure per year	Orientation	Total 295 - 2450 nm MJ/m ²	UV 295 - 385 nm MJ/m ²	UV 300 - 400 nm MJ/m²
	5° S	6337	309	402
Miami, Florida/US	26° S	6675	313	407
(2000 - 2022) (90°: 2009 - 2013)	45 °S	6313	288	374
(90.2009-2013)	90 °S	3630	166	215
	5° S	7553	348	452
Phoenix, Arizona/US	34° S	8377	351	456
(2000 - 2022)	45 °S	8235	333	433
Sanary-sur-Mer, France	0°	5774	232	301
(2006 - 2022)	45 °S	6896	257	334
Hoek van Holland, The	0°	3963	159	207
Netherlands (2007 - 2022)	45 °S	4587	171	222
Chennai, India (2008 - 2022)	5° S	6876	304	380

Note 1: old unit "Langley": 1 Ly = $41,84 \text{ kJ/m}^2$

Data source: Atlas Weathering Service Group (AWSG)

Note 2: red and green values calculated based on H(300 – 400 nm) ~ 1.3 x H(295-385 nm)

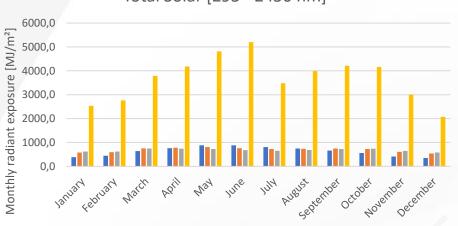


Atlas MTT CED 2023, Atlas-mts.com

ACCELERATED OUTDOOR WEATHERING

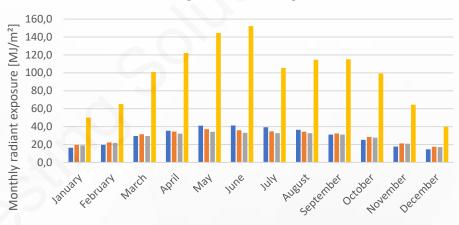
- **ISO 877-3** Plastics Methods of exposure to solar radiation Part 3: Intensified weathering using Fresnel mirrors
- ASTM G90 Standard Practice for Performing Accelerated Outdoor Weathering of Nonmetallic Materials Using Concentrated Natural Sunlight

Temperature control: by air flow or cool mirrors (LT-EMMA)


Radiation (Diffuse)

EMMA[®]/EMMAQUA[®] Equatorial Mount with Mirrors for Acceleration (AQUA – with water spray)

EMMA/EMMAQUA® RADIANT ENERGY


■ 45° ■ EMMAQUA

5°

34°

Total Solar [295 - 2450 nm]

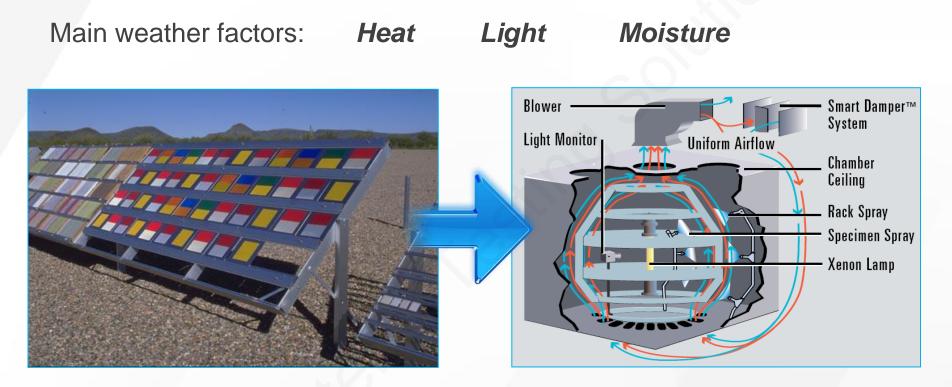
UV [295 - 385 nm]

5° ■ 34° ■ 45° ■ EMMAQUA

Average Phoenix	Intensification	factor vs. 34°
(2000-2022)	Total	UV
January	4.28	2.56
February	4.68	3.02
March	4.88	3.15
April	5.33	3.62
May	5.93	3.88
June	6.69	4.21
July	4.62	2.96
August	5.27	3.32
September	5.48	3.49
October	5.67	3.48
November	4.79	2.98
December	3.80	2.26

OUTLINE

- Introduction of Atlas
- Factors of Weathering
 - Solar Radiation
 - Heat
 - Moisture


Weathering testing

- Natural Weathering
- Accelerated Laboratory Weathering
- Acceleration and Correlation
- Summary
- Question and answers (time permitting)

BRINGING THE OUTDOORS INTO THE LABORATORY

Laboratory weathering instruments deliver simulated solar radiation, heat and moisture in a controlled, reproducible way to both eliminate natural outdoor weather variability and provide test acceleration through increased stress levels.

How well this is accomplished differentiates instruments and manufacturers.

Correlation

- same stress as in outdoor conditions results in:
- same macroscopic ageing/appearance change
- Relevance
 - same degradation pathway, same degradation mechanism

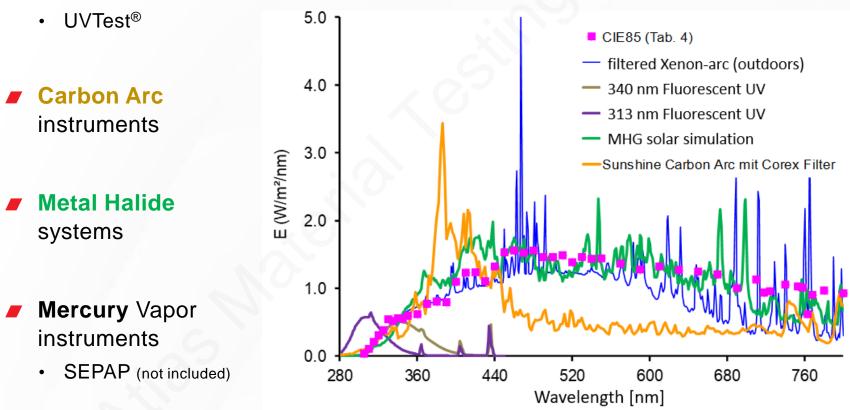
Acceleration

over field exposures

Precision

- Repeatable and reproducible test results
- Independent control over stress factors

Atlas MTT CED 2023, Atlas-mts.com

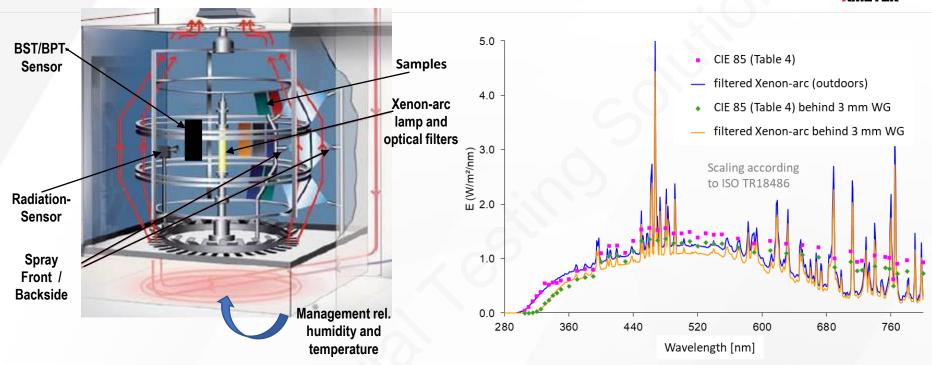

31

LIGHT SOURCES FOR LABORATORY WEATHERING

Xenon Arc instruments

Weather-Ometer[®], Xenotest[®], SUNTEST[®]

Fluorescent UV instruments



XENON-ARC WEATHERING

METEK

Weathering with full spectrum Xenon-arc radiation:

- Monitoring and control of all test variables (Irradiance, CHT, BPT, RH)
- Cycles (dry/rain phase and/or light/dark phase)

General Standards:

ASTM G155 Standard Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic Materials **ISO 16474-2** Paints and varnishes - Methods of exposure to laboratory light sources - Part 2: Xenon-arc lamps **ISO 4892-2** Plastics - Methods of exposure to laboratory light sources - Part 2: Xenon-arc sources

ROTATING-RACK XENON-ARC INSTRUMENTS

Radiation monitor

Xenon Lamp & Filter Assembly

Irradiance sensor (according to ISO 9370) and BST on sample level

BENEFITS AND APPLICATIONS

Rotating-rack type:

"Full weathering instrument"

- Monitoring and control of irradiance, surface temperature and chamber air temperature
- Water spray

Strengths and application

- Flat test specimen
- Irradiance and temperature uniformity
- High capacity
- Backing options

Limitations

- Specimen size (flat)
- Specimen dimensions (3D)

Flat-bed type:

- "Full weathering instrument"
 - Monitoring and control of irradiance, surface temperature and chamber air temperature
 - Water spray

Strengths and Application

- Component (3D) testing
- Cooling option
- Limitations
 - · Irradiance and temperature uniformity

SUNTEST[®] XXL / XXL+

GENERAL TEST METHODS

Weathering

Materials for exterior applications

- Parameters:
 - <u>Radiation</u>: Outdoor "Daylight"
 - Heat: Normal Temperature
 - <u>Humidity</u>: Rain, Dew, Relative Humidity

Lightfastness

Materials for interior applications

- Parameters:
 - Radiation: "Daylight" behind window glass
 - Heat: Normal Temperature
 - Humidity: Relative Humidity

Hot-Lightfastness

Materials for automotive interior applications

- Parameters:
 - Radiation: "Daylight" behind window glass
 - Heat: High Temperature
 - Humidity: Relative Humidity

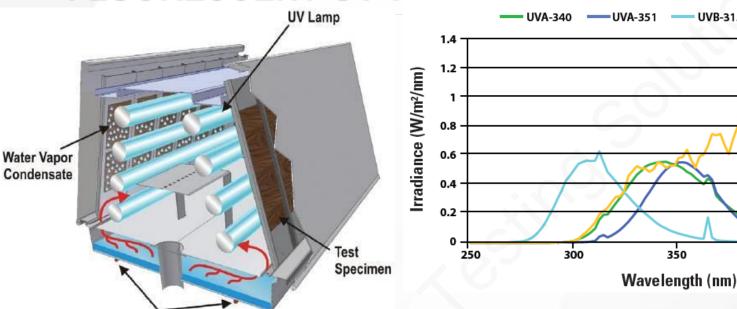
Outdoor exposure: direct Instrument: Xenon-arc, Fluorescent UV, Carbon-arc Climate types: Moderate, Humid, Arid... Application: Plastics, Coatings, Technical Textiles, ... Test Phases: Spray, Condensation, Dry, Dark, Light Examples: ISO 4892-2 Cycle 1, ASTM G155 Cycle 1 SAE J2527, ISO 105-B10, ASTM D7869, ISO 16474-2 Cycle 1

Outdoor exposure: behind window glass Instrument: Xenon-arc, (Fluorescent UV), Carbon-arc Climate type: interior climate Application: Apparel, Furniture, Packaging, Paper, ... Test Phases: Dry, (Dark), Light Examples: ISO 4892-2 Cycle 2, ASTM G155 Cycle 4, ISO 105-B02, ISO 12040, ISO 16474-2 Cycle 2

Outdoor exposure: behind window glass, IP/DP-Box, Black Box Instrument: Xenon-arc, Carbon-arc Climate type: automotive interior climate Application: Plastics, Coatings, Leather, Textiles, ... Test Phases: Dry, (Dark), Light Examples: ISO 4892-2 Cycle 3, ASTM G155 C.8, SAE J2412, ISO 105-B06

Xenon-arc instruments:

	Method A — Exposures using daylight filters (artificial weathering)						
Cycle Exposure No period	Irradiance		Black-	Chamber	Relative		
		Broadband UV300-400 [W/m²]	Narrowband [W/(m²·nm)]	standard temperature [°C]	temperature [°C]	humidity %	
1	102 min dry	60 ± 2	0.51 ± 0,02 (@340 nm)	65 ± 3	38 ± 3	50 ± 10	
	18 min water spray	60 ± 2	0.51 ± 0,02 (@340 nm)				
	Method B — Exposures using window glass filters						
2	Continuously dry	50 ± 2	1.10 ± 0,02 (@420 nm)	65 ± 3	38 ± 3	50 ± 10	
3	Continuously dry	50 ± 2	1.10 ± 0,02 (@420 nm)	100 ± 3	65 ± 3	20 ± 10	


- \rightarrow typical weathering cycle
- → harmonized with ISO 16474-2 (coatings) ISO 105-B10 (textiles)
- → lightfastness cycle

→ hot-lightfastness cycle

→ Cycles 4,5,6 are similar, but with BPT control

FLUORESCENT UV WEATHERING

Water Heating Element

Typical control parameters:

- SPD by lamp type (UVB-313, UVA-340, UVA-351)
- Irradiance control
- BPT control
- Water sprays
- Condensation (dark cycle)
- Light/Dark Cycling
- No RH control

General Standards:

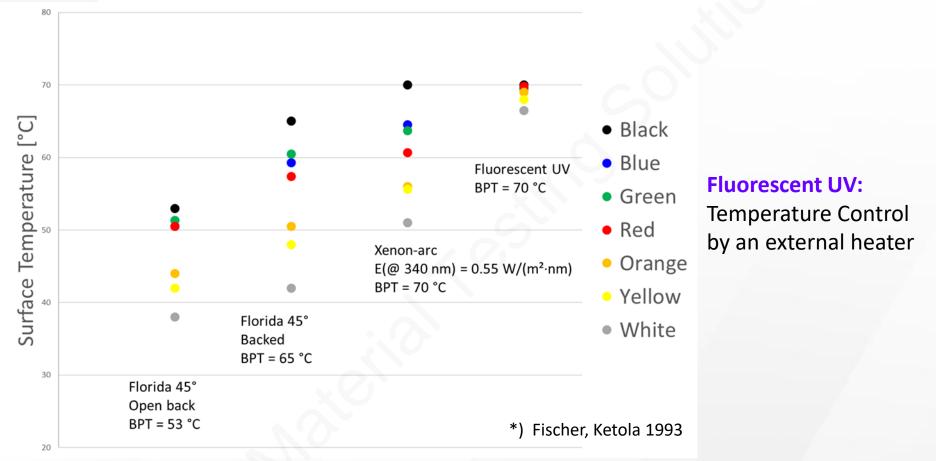
ASTM G154 Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials

350

UVB-313

Sunlight

400


ISO 16474-3 Paints and varnishes - Methods of exposure to laboratory light sources - Part 3: Fluorescent UV lamps **ISO 4892-3** Plastics - Methods of exposure to laboratory light sources - Part 3: Fluorescent UV lamps

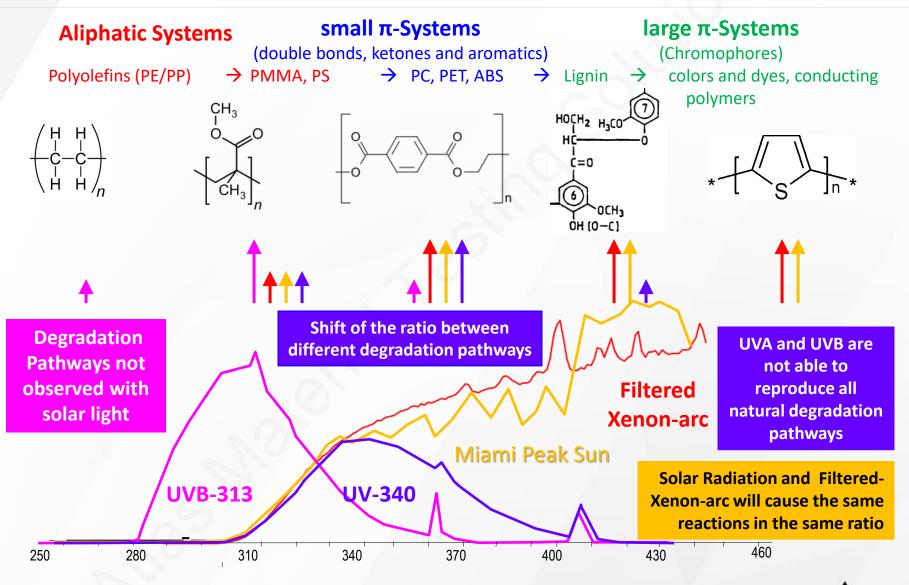
450

FLUORESCENT UV DEVICES: TEMPERATURE EFFECTS

- → different colored samples absorb different wavelength regions and heat up differently in outdoor exposures
- → fluorescent UV lamps don't heat up the samples by IR and visible radiation
- \rightarrow all samples will have almost the same temperature by external heaters

Fluorescent-UV instruments:

	Method A. Artificial act	celerated weathering with UVA-340	· ·		
Cycle No. Exposure period		Irradiance	Black-panel temperature		
1	8 h dry 4 h condensation	0.76 W⋅m ⁻² ⋅nm ⁻¹ at 340 nm UV lamp off	$\begin{array}{ccc} 60 & \stackrel{\circ}{} & C \pm 3 & \stackrel{\circ}{} & C \\ 50 & \stackrel{\circ}{} & C \pm 3 & \stackrel{\circ}{} & C \end{array}$		
2	8 h dry 0.25 h water spray 3.75 h condensation	0.76 W⋅m ⁻² ⋅nm–1 at 340 nm UV lamp off UV lamp off	$50\ ^\circ\ C\pm 3\ ^\circ\ C$ Not controlled $50\ ^\circ\ C\pm 3\ ^\circ\ C$		
3*)	5 h dry 1 h water spray	0.83 W⋅m ⁻² ⋅nm ⁻¹ at 340 nm UV lamp off	50 $^\circ~$ C \pm 3 $^\circ~$ C Not controlled		
4	5 h dry 1 h water spray	0.83 W⋅m ⁻² ⋅nm–1 at 340 nm UV lamp off	70 $^{\circ}$ C ± 3 $^{\circ}$ C Not controlled		
lethod B: Art	tificial accelerated weather	ering with UVA-351 lamps (daylight	t behind window glas		
5**)	24 h dry (no moisture)	0.76 W⋅m ⁻² ⋅nm ⁻¹ at 340 nm	50 $^{\circ}$ C ± 3 $^{\circ}$ C		
	Method C: Artificial acc	celerated weathering with UVB-313	lamps		
6	8 h dry 4 h condensation	0.48 W·m ⁻² ·nm ⁻¹ at 310 nm UV lamp off	70 ° C ± 3 ° C 50 ° C ± 3 ° C		


Notes: - Relative humidity not controlled ^{*} identical to ISO 16474-3 Cycle 2; **) identical to ISO 16474-3 Cycle 3;

- Methods not harmonized with ISO 16474-3

- for coatings, the typical weathering cycle is 4 h dry with radiation / 4 h condensation

SPECTRAL SENSITIVITIES AND RADIATION SOURCES

Atlas MTT CED 2023, Atlas-mts.com

OUTLINE

- Introduction of Atlas
- Factors of Weathering
 - Solar Radiation
 - Heat
- MoistureWeathering testing
 - Natural Weathering
 - Accelerated Laboratory Weathering
- Acceleration and Correlation
- Summary
- Question and answers (time permitting)

THE TWO QUESTIONS OF TESTING

METEK

How fast is my test?

How good is my test?

What do I know?

- Annual Radiant Exposure in Florida: H(300 nm 400 nm) = 402 MJ/m²
- Laboratory test: ISO 4892-2. Irradiance: E(300 nm 400 nm) = 60 W/m²
- **Question:** How long does it take a **weathering instrument** to reach the solar radiant exposure of **1 year Miami** (at 5° South orientation)?
- **Formula:** Radiant Exposure H = Irradiance E x Time t

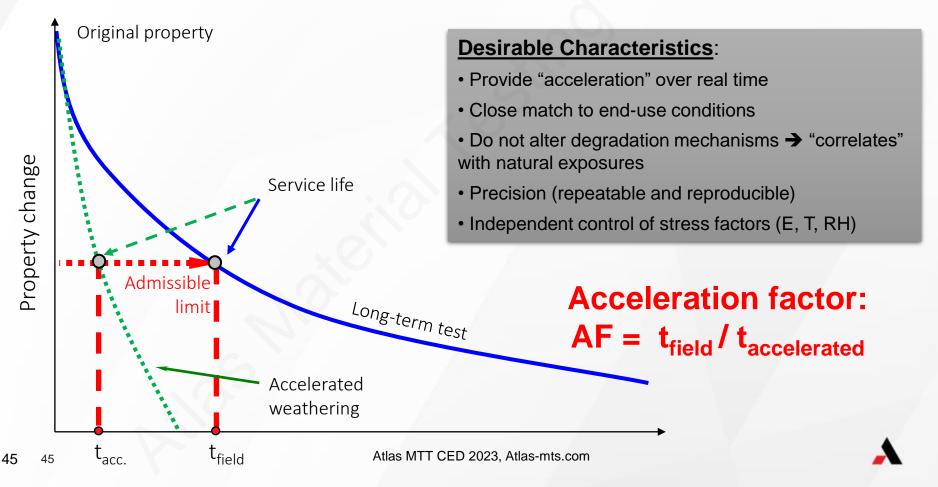
 $H = E \times t$

- t = H / E
- $= 402 \text{ MJ/m}^2 / 60 \text{ W/m}^2$
- = 402/60 10⁶ J/W
- $= 6.7 \ 10^6 \ s$
- = 1861 h = 78 days = 11 weeks

1 W = 1 J/s 1 J/W = 1 s 1 h = 3600 s $AF_{F} = 52/11 = 4.7$

ACCELERATION FACTOR VARIABILITY

Region	Accelerated Xenon-arc Weathering						
	Calculated factors (based on annual radiation)	Experimental acceleration factors – reported values					
Central Europe	8.8	27	20	\mathbf{S}	13 – 23	9	
Sanary (South France)	6.4		5				
Florida	4.7	4	6	9	5 – 7	4	3.5
Arizona	4.3						
Kalahari	4.8	9					


Deviation from calculated and measured factors → "Real acceleration factors" depend on reference location, test conditions (temperature, moisture) and the material!

WEATHERING TESTS – ACCELERATION FACTOR

The time required in a **specific outdoor weathering test** to induce a certain specific property change in a specific specimen, divided by the time needed for the same change in a replicate specimen in a **specific accelerated laboratory (or outdoor) weathering test**:

ACCELERATION – CORRELATION

Factors used to achieve acceleration:

- Radiation
 - Short wavelength radiation (below natural UV-cut on)
 - Level of spectral irradiance

> Temperature

- Level of temperature
- Temperature cycles

> Moisture

 dry/wet cycles (amplitude/frequency)

Factors that may decrease correlation (ISO 4892-1 and ASTM G151):

- Short wavelength exposure
- Spectral distribution with high deviation from sun radiation
- High intensity exposure
- Continuous exposure to light
- Unrealistic specimen temperatures
- Unrealistic or non-existent temperature cycling
- Unrealistic or non-existent moisture delivery
 - ... and others

Balance between correlation and acceleration

OBJECTIVES OF WEATHERING TESTING

Comparable Methods

Aging under more or less realistic but easily controllable and reproducible conditions

Test conditions:

- General
- Regardless of material/location

Objective: Ranking, repeatability, reproducibility

Examples:

<u>ASTM G155 (2021</u>) Standard Practice for Operating Xenon Arc Lamp Apparatus for Exposure of Materials

<u>ISO 4892-2 (2021</u>) Plastics - Methods of exposure to laboratory light sources - Part 2: Xenon-arc lamps

ISO 105-B02 (2013) Textiles - Tests for colour fastness -Part B02: Colour fastness to artificial light: Xenon arc fading lamp test

General

Realistic/Predictive Methods

Simulation of the climatic conditions and ideally the aging processes that prevail in use

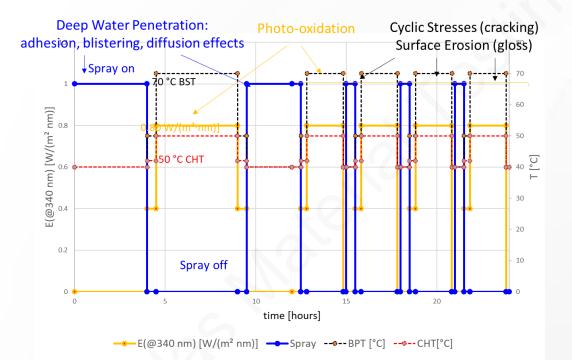
Test conditions dependent on:

- Place of use/climate zone
- material
- application

Objective:

Reproduction of damage mechanisms, lifetime prediction

Example:

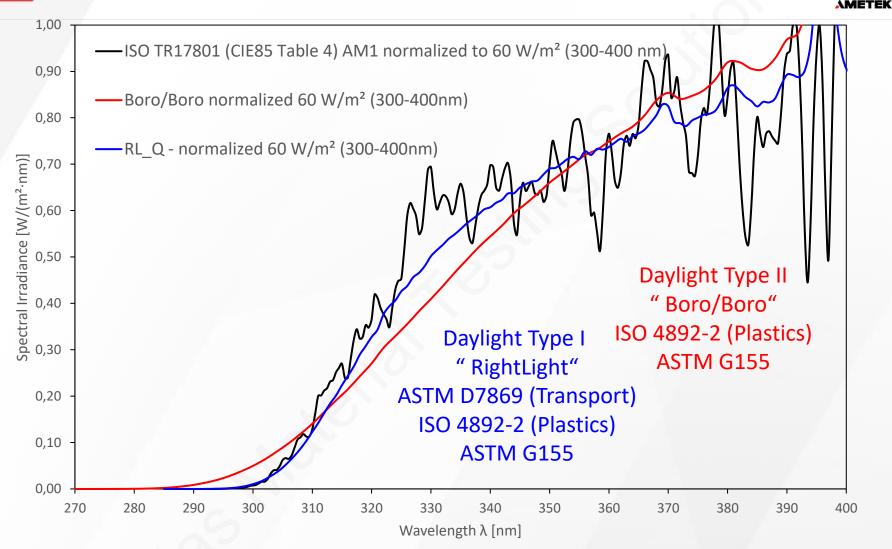

ASTM D7869 (2017) Standard Practice for Xenon Arc Exposure Test with Enhanced Light and Water Exposure for Transportation Coatings

Material Specific

HIGHLIGHT OF THE PAST YEARS: ASTM D7869

Motivation: Realistisc Test Method

ASTM D7869 (2017) Standard Practice for Xenon Arc Exposure Test with Enhanced Light and Water Exposure for Transportation Coatings



	Total Irradiance Over Indicated Wavelength Band (W/m ²)		
Wavelength band (nm)	Irradiance	Maximum Irradiance (W/m²/nm)	
λ < 290	0.00	0.005	
290 ≤ λ < 295	0.00	0.01	
$295 \leq \lambda < 300$	0.01	0.04	
$300 \le \lambda < 305$	0.10	0.20	
$305 \le \lambda < 310$	0.38	0.56	
$310 \le \lambda < 320$	2.29	3.10	
$320 \le \lambda < 330$	4.76	5.82	
$330 \leq \lambda < 340$	6.84	7.56	
$340 \le \lambda < 350$	7.69	9.40	
$350 \le \lambda < 360$	8.13	11.00	
$360 \le \lambda < 370$	8.32	12.47	
$370 \le \lambda < 380$	8.30	13.83	
$380 \leq \lambda < 390$	8.64	14.40	
$390 \le \lambda < 400$	9.23	17.15	

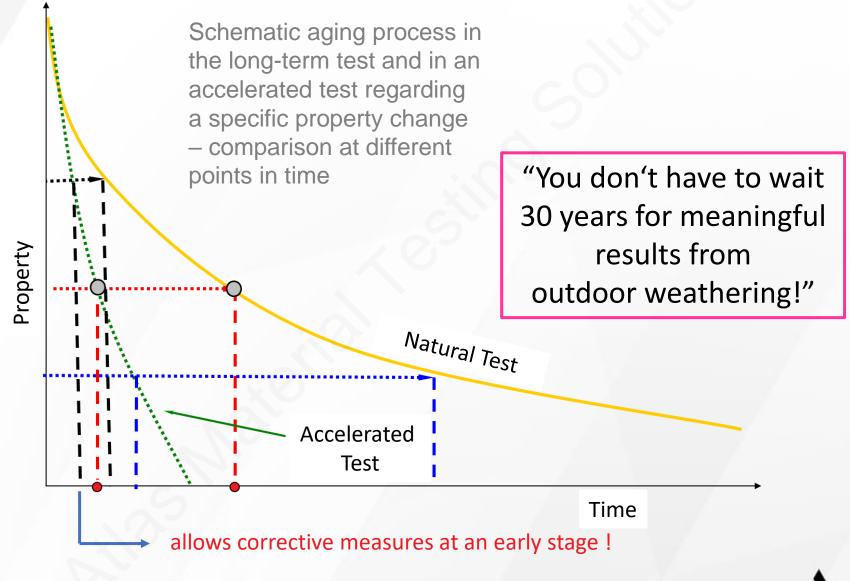
DEVELOPMENT OF NEW FILTER COMBINATIONS

Note: Extended-UV Filters are not included in ISO 4982-2/ISO 16474-2, but in ASTM G155.

Atlas MTT CED 2023, Atlas-mts.com

TESTING RECOMMENDATIONS

General Testing Recommendations for Material Development:


- always include materials you know (control)
- always include materials which will fail
- use different degrees of acceleration e.g. standard testing (ISO 4892-2, 60 W/m² + high irradiance) and static outdoor and accelerated outdoor (EMMAQUA)
- for planning of test time, especially for long lasting products (10 years or longer), consider radiant exposure and temperature (Arrhenius)
- always include outdoor validation and start it now!

- → highly accelerated tests allow early extrapolation and prediction
- → continuous validation and corrective measures will give increasing confidence in product performance

POINT OF TIME FOR COMPARISON

Atlas MTT CED 2023, Atlas-mts.com

Acceleration (factor) is material dependent!

A good test is based on SLP models and provides the right balance between acceleration and empirical realism!

A good method found for one material is not necessarily working similarly well for another!

METEK

Questions?

Atlas Material Testing Technology 1500 Bishop Court Mount Prospect, Illinois 60056, USA Phone +1-773-327-4520 Atlas Material Testing Technology GmbH Vogelsbergstraße 22 63589 Linsengericht, GERMANY Phone +49-6051-707140