
Biodegradation Studies and Experiments for Materials in the Marine Environment Series

Part 2: Status of Current ASTM / ISO Standards, Specifications and Research Studies in the Marine Environment

Prof. dr. Linda Amaral-Zettler Research Leader NIOZ Royal Netherlands Institute for Sea Research

Amaral-Zettler Research Group

< Share

 ${\bf \nabla}$

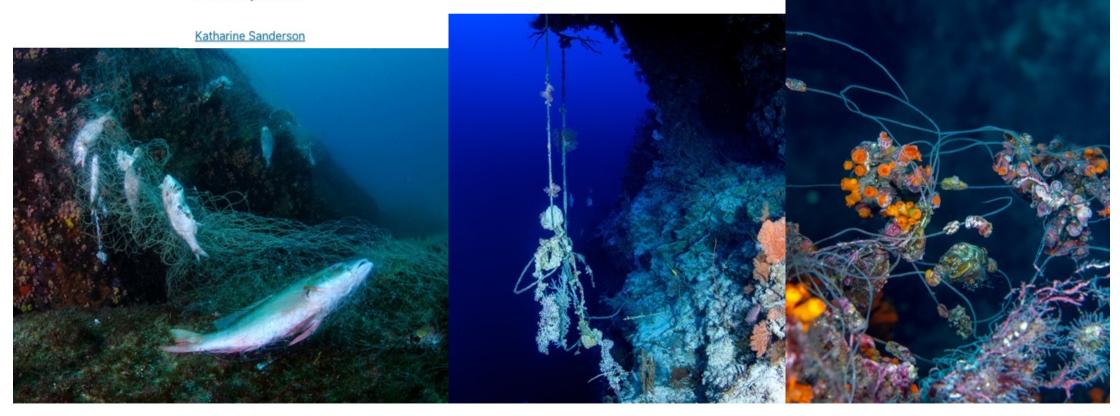
Science & Environment

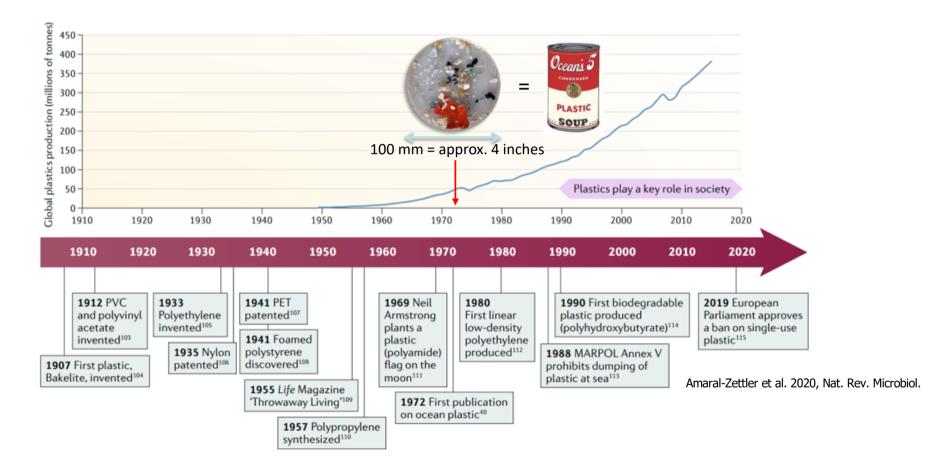
Ocean plastic a 'planetary crisis' - UN

By Roger Harrabin BBC environment analyst, Nairobi

O 9 hours ago Science & Environment

Plastic waste has a variety of detrimental effects on the environment


Life in the seas risks irreparable damage from a rising tide of plastic waste, the UN oceans chief has warned.


nature NEWS | 12 July 2023

Striking images show plastic litter in the world's most remote coral reefs

Fishing nets, packaging and other debris threaten wildlife in some of the ocean's deepest reef ecosystems.

Plastics Timeline

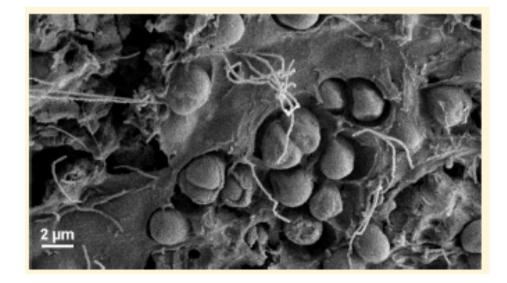
Approximately 10 million tonnes per year enters ocean

(Jambeck et al. 2015, Science)

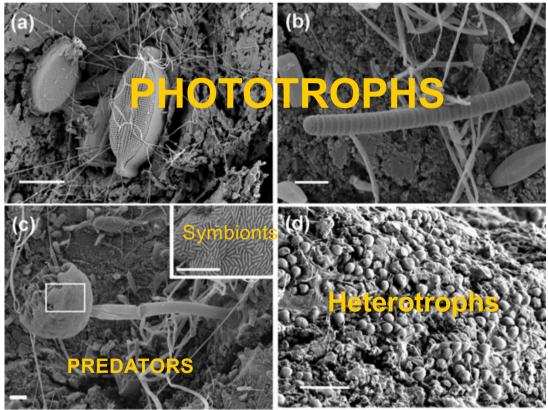
Published online 28 March 2011 | Nature | doi:10.1038/news.2011.191

News

Marine microbes digest plastic

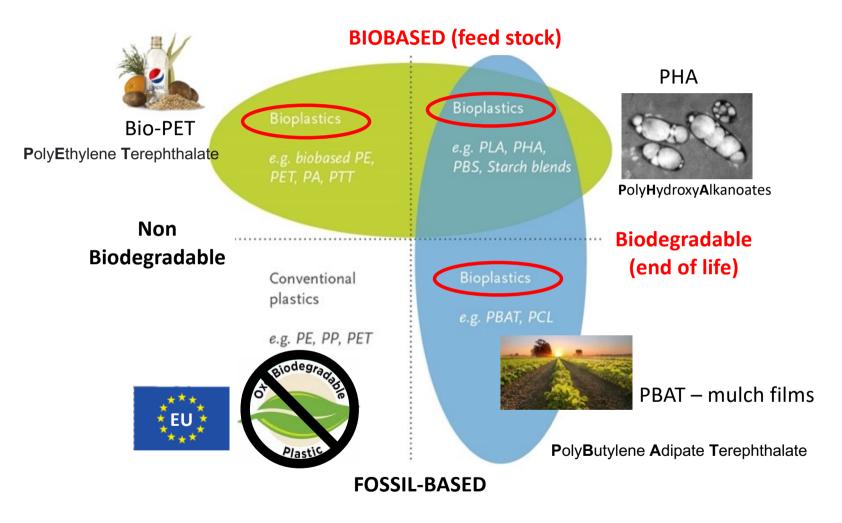

June 2011 Scientific American

A 'little world' eating ocean garbage might be a mixed blessing.


Hitchhikers Marine microbes may hold the key

Marine microbes may hold the key to the ocean's disappearing plastic

Microbial Communities on Plastic Marine Debris: The "Plastisphere"


"Like the biosphere (the thin film of life around the surface of planet Earth), the Plastisphere represents a little world of life that exists on the surface of plastic particles"

All scale bars = $10 \ \mu m$

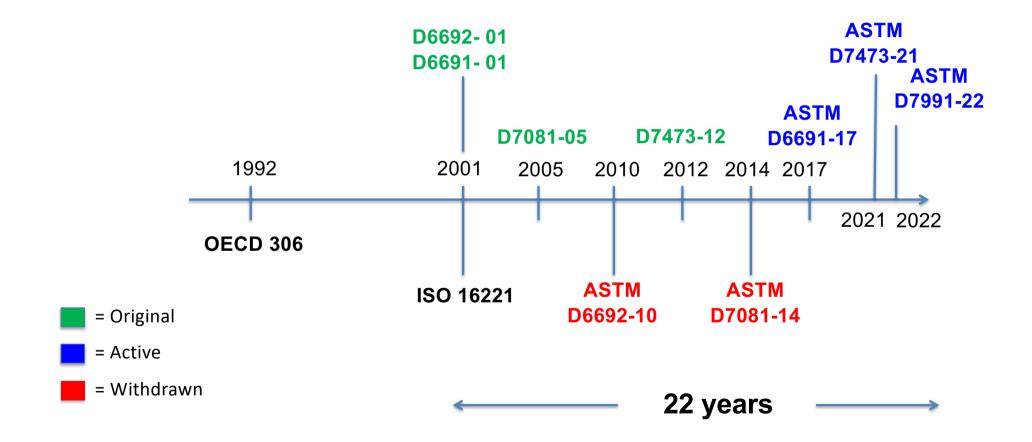
Zettler, Mincer, Amaral-Zettler 2013

A Bioplastics Solution?

Sources: https://www.european-bioplastics.org/bioplastics/materials/;; https://www.european-bioplastics.org/bioplastics/materials/;; https://www.european-bioplastics.org/bioplastics/materials/;; https://www.european-bioplastics.org/bioplastics/materials/; https://www.european-bioplastics.org/bioplastics/materials/; https://www.european-bioplastics.org/bioplastics/materials/; https://www.european-bioplastics.org/bioplastics/materials/; https://www.european-bioplastics-rubber.basf.com/global/en/performance_polymers/sustainability.html biobasedpress.eu; plastivision.org

Plastic biodegradation is the extensive conversion of polymer carbon to CO_2 (under oxic conditions) or CO_2 and CH_4 (under anoxic conditions), and new microbial biomass, over a specific timeframe.

SAPEA Evidence Report 8, 2020

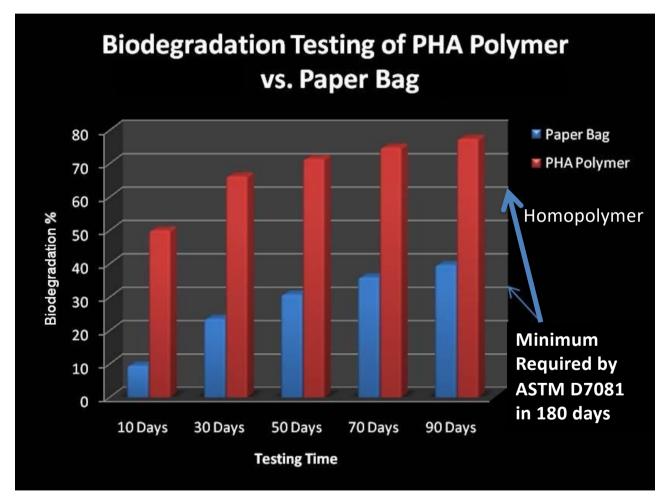


Motivation and Funding that fueled initial Biodegradation Testing & Research

John AFLOAT Ronting John Ann Ra	atto Biodegradable Polymer Testing and Research	Carl Wirsen
and the first of		
U.S. Navy WRAPS Waste Afloat Protects the Sea	U.S. Army	Woods Hole Oceanographic Institution (WHOI)
	Courtesy of Jo Ann Ratto UNCLASSIFIED	

A Timeline of Biodegradation Methods in the Marine Environment

ASTM Standards Terminology

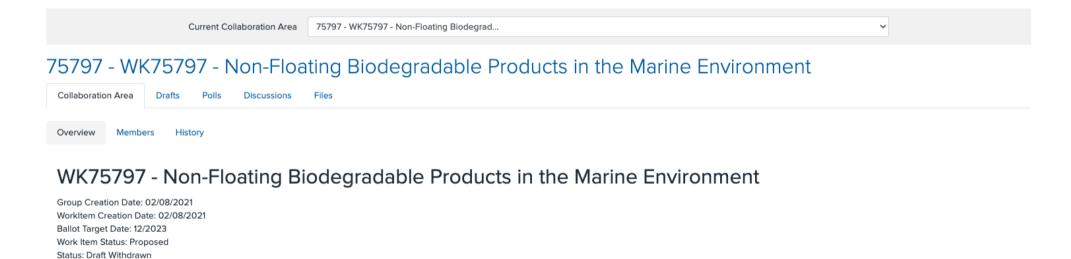

 Standard Practice [practice, n— a definitive set of instructions for performing one or more specific operations that does not produce a test result – ASTM Bluebook April, 2016]

2. Standard test method [**test method**, **n**— a definitive procedure that produces a test result -- ASTM Bluebook April, 2016]

3. Specification [**specification**, **n**— an explicit set of requirements to be satisfied by a material, product, system, or service – ASTM Bluebook, April 2016]

- Tier I Standard methods in laboratory
 - Respirometry methods
 - ASTM D6691
 - Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in the Marine Environment by a Defined Microbial Consortium or Natural Sea Water Inoculum
- Tier II Confirmatory in Marine Environment
 - Incubation methods / Weight loss as a function of time
 - Static Laboratory
 - Dynamic Aquarium
 - ASTM D7473 Test Method For Weight Attrition of Plastic Materials in the Marine Environment by Open System Aquarium Incubations
- Tier III Confirmatory in Marine Environment
 - Incubation methods / Weight loss as function of time
 - Coastal Studies
 - Deep Sea Moorings

Standard Specification D7081 (pass/fail criterion): Polymer vs. Kraft Paper (Tier I)


Slide courtesy of Jo Ann Ratto

Specification for Non-Floating Biodegradable Products in the Aquatic Environment – Replacement for D7081

ASTM INTERNATIONAL

ASTM International Collaboration Area

Work Item Description

There is an industry need for a standardized approach to demonstrate product conformance for biodegradability in a marine environment. Currently, with no active ASTM specification standard, state and organizations are developing their own methods or prohibiting the use of terminology that implies biodegradation in a marine environment. The need to reestablish a specification standard in this area, with a cooperative industry approach, is critical. Users will include, academia, testing labs, government and industry manufacturing.

Specification for Non-Floating Biodegradable Products in the Aquatic Environment - Replacement for D7081

ASTM INTERNATIONAL

ASTM International Collaboration Area

Current Collaboration Area	75797 - WK75797 - Non-Floating Biodegrad	Aquatic	~
75797 - WK75797 - Non-Floa	ating Biodegradable Produc	ts in the Marine Environment	
Collaboration Area Drafts Polls Discussions	Files		
Overview Members History		Aquatic	
WK75797 - Non-Floating B	odegradable Products in th	e Marine Environment	
Group Creation Date: 02/08/2021 WorkItem Creation Date: 02/08/2021 Ballot Target Date: 12/2023 Work Item Status: Proposed			

Work Item Description

There is an industry need for a standardized approach to demonstrate product conformance for biodegradability in a marine environment. Currently, with no active ASTM specification standard, state and organizations are developing their own methods or prohibiting the use of terminology that implies biodegradation in a marine environment. The need to reestablish a specification standard in this area, with a cooperative industry approach, is critical. Users will include, academia, testing labs, government and industry manufacturing.

Standard Specification for Non-Floating Biodegradable Products Designed for use in an Aquatic Environment¹

This standard is issued under the fixed designation DXXXX; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers non-floating products that are designed for use in an aquatic environment and are biodegradable in a stated aquatic environment.

1.2 This specification is intended to establish the requirements for labeling products as "Biodegradable in *a stated aquatic* environment as a non-floating object at $20^{\circ}C$ in *X*, per ASTM DXXXX." The label must use qualifying language that states the type of aquatic environment.

NOTE 1- The stated aquatic environment will be based on the testing standard and the inoculum. It is not the intent of this standard to specify the type of aquatic environment.

NOTE 2 - 20°C may be replaced with 68°F if the claim is being made in a country that uses the imperial system.

NOTE 3 - Where "X" is the time and can be denoted in either total days or a combination of years and days.

1.3 The properties in this specification are those required to determine if products designed for use in the aquatic environment will biodegrade with specific rate/rate constant in aquatic environments at designated temperature(s).

1.4 This standard does not promote or encourage the disposal or loss or leakage of biodegradable materials or products into the aquatic environment. Nor does it address microplastics, nanoplastics, microparticles or nanoparticles. However, a fully biodegradable material or product will not, by this standard, permanently generate microplastics, nanoplastics, microparticles or nanoparticles. Microplastics, nanoplastics, microparticles or nanoparticles. Microplastics, nanoplastics, microparticles or nanoparticles. Microplastics, nanoplastics, microparticles or nanoparticles may be generated in the process of the material or product going through full biodegradation, though they will not exist after complete biodegradation.

- Requires biodegradation rates at three different temperatures
- Uses Kinetic Rate Law and Arrhenius Equation
- Used to obtain lifetime predictions of products to achieve 90% biodegradation at a given temperature as a basis for comparative analyses

ASTM International Collaboration Area

Current Collaboration Area 79317 - WK82370 - Revision of D6691-17 S...

79317 - WK82370 - Revision of D6691-17 Standard Test Method for Determining Aerobic

Biodegradation of Plastic Materials in the Marine Environment by a Defined Microbial Consortium or

~

Natural Sea Water Inoculum

WK82370 - Revision of D6691-17 Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in the Marine Environment by a Defined Microbial Consortium or Natural Sea Water Inoculum

WorkItem Creation Date: 06/22/2022 Ballot Target Date: 12/2023 Work Item Status: Draft Under Development Status: Draft Under Development

Work Item Description

ASTM D6691 is scheduled for review, and committee members have advised that more data is available which might be considered.

The Marine Environment is Not Homogeneous

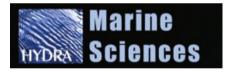
Continental Margin Human Edges Central Deep Deep Margin Waters Margin Near Coastal Microbial Shore Shelf Environment*** Coral Light Reefs* Zone 0 . Sparse nutrients Ice Ocean*** 1 -Low temperatures 2 -Depth (km) s Vents Dark Zone High hydrostatic pressure 4 Ridge Abyssal Plain Seamounts Seep Reduced microbial activity 5 -6

Theoretical Cross Section of the Ocean

* Coral reefs are found in the warm waters of the Atlantic. Pacific, and Indian oceans.

** Microbial environment encompasses the entire world ocean.

*** Ice oceans occur at both poles.


Open Bio: (opening the market for biobased products) EU 7th Framework Nov 2013-Oct 2016

- Tests under anaerobic conditions should be developed
- Tests under high-pressure and low temperature should be developed
- Tests with fine sediments under low oxygen conditions are needed
- Effects of **different levels of nutrients** and **organic contents** should be considered to develop all the standard tests
- Testing in **mesocosms**
- Extract representative habitats from nature and translate their conditions to a set of standard laboratory and mesocosm tests to be developed and implemented, representing the most important regions of our oceans.

Francesco Degli Innocenti

	E	
D		
B1	c	
В		

ASTM D7991-22

"Standard Test Method for Determining Aerobic Biodegradation of Plastics Buried in Sandy Marine Sediment under Controlled Laboratory Conditions"

ISO (International Standards Organization): Subcommittee 14: Plastics and the Environment Working Group 2: Biodegradability

ISO/CD 22403, Plastics - Assessment of the inherent aerobic biodegradability and environmental safety of non-floating materials exposed to marine inocula under laboratory and mesophilic conditions - Test methods and requirements

ISO 19679:2016(E) Plastics - Determination of aerobic biodegradation of non-floating plastic materials in a seawater/sediment interface - Method by analysis of evolved carbon dioxide

ISO/DIS 23977-1/2 Plastics - Determination of aerobic biodegradation of plastic materials exposed to seawater-

- 1 Method by analysis of evolved carbon dioxide
- 2 Method by measuring the oxygen demand in closed respirometer

ISO-TAG Meeting September 23-28, 2019 Chengdu, China

Marine Standards	Resp	pirometry / BOD Weight Loss – Agin			– Aging / Weat	/eathering / Disintegration		
	Lab	oratory	Aquarium		Field			
Pelagic (Seawater)	ASTM D6691 CO ₂	ISO 23977/1- CO ₂ ISO 23977/2 -O ₂	ISO 15314	ISO/CD :	16636	ASTM D7473	ISO 15314	ISO/CD 16636
Pelagic (Seawater/ Seawater + Sediment)	ISO 23977/1- CO ₂ ISO 23977/2 -O ₂							
Benthic (Seafloor)	ISO 18830 O ₂	ISO 19679 CO ₂	ISO 23832 ASTM D7473					
Eulittoral (Beach)	ASTM D7991 CO ₂	ISO 22404 CO ₂	ISO 23832		ISO 23832 ISO 22766		2766	

Science

Temperature is the main driver of microbial community composition

OCEAN PLANKTON

Structure and function of the global ocean microbiome

Shinichi Sunagawa,^{1*+} Luis Pedro Coelho,^{1*} Samuel Chaffron,^{2,3,4*} Jens Roat Kultima,¹ Karine Labadie,⁵ Guillem Salazar,⁶ Bardya Djahanschiri,¹ Georg Zeller,¹ Daniel R. Mende,¹ Adriana Alberti,⁵ Francisco M. Cornejo-Castillo,⁶ Paul I. Costea,¹ Corinne Cruaud,⁵ Francesco d'Ovidio,⁷ Stefan Engelen,⁵ Isabel Ferrera,⁶ Josep M. Gasol,⁶ Lionel Guidi,^{8,9} Falk Hildebrand,¹ Florian Kokoszka,^{10,11} Cyrille Lepoivre,¹² Gipsi Lima-Mendez,^{2,3,4} Julie Poulain,⁵ Bonnie T. Poulos,¹³ Marta Royo-Llonch,⁶ Hugo Sarmento,^{6,14} Sara Vieira-Silva,^{2,3,4} Céline Dimier,^{10,15,16} Marc Picheral,^{8,9} Sarah Searson,^{8,9} Stefanie Kandels-Lewis,^{1,17} *Tara* Oceans coordinators‡ Chris Bowler,¹⁰ Colomban de Vargas,^{15,16} Gabriel Gorsky,^{8,9} Nigel Grimsley,^{18,19} Pascal Hingamp,¹² Daniele Iudicone,²⁰ Olivier Jaillon,^{5,21,22} Fabrice Not,^{15,16} Hiroyuki Ogata,²³ Stephane Pesant,^{24,25} Sabrina Speich,^{26,27} Lars Stemmann,^{8,9} Matthew B. Sullivan,^{13§} Jean Weissenbach,^{5,21,22} Patrick Wincker,^{5,21,22} Eric Karsenti,^{10,17}‡ Jeroen Raes,^{2,3,4} Silvia G. Acinas,⁶† Peer Bork^{1,28}†

Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 *Tara* Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems.

22 May 2015 Vol 348, Issue 6237 DOI: 10.1126/science.1261359

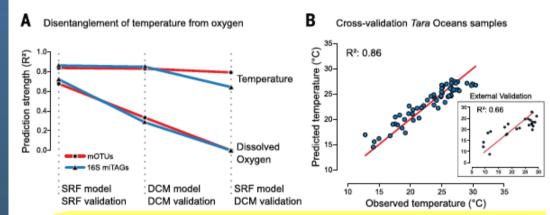
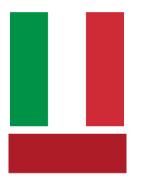
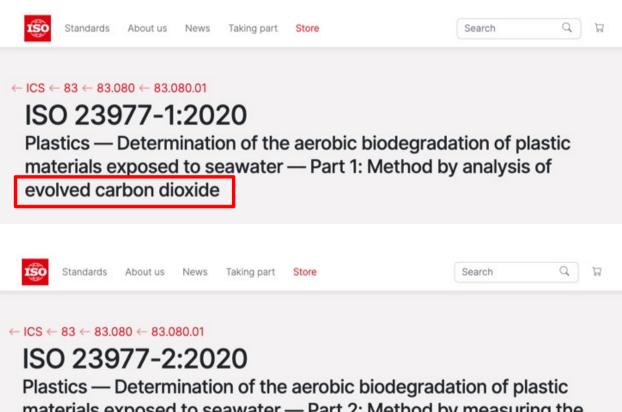



Fig. 6. Temperature as main environmental driver for microbial community composition in the epipelagic layer. (A) The strength of association between (meta)genomic and environmental data was tested by statistical models that were first generated with a subset of data for training and then validated

ISO Round Robin Participants

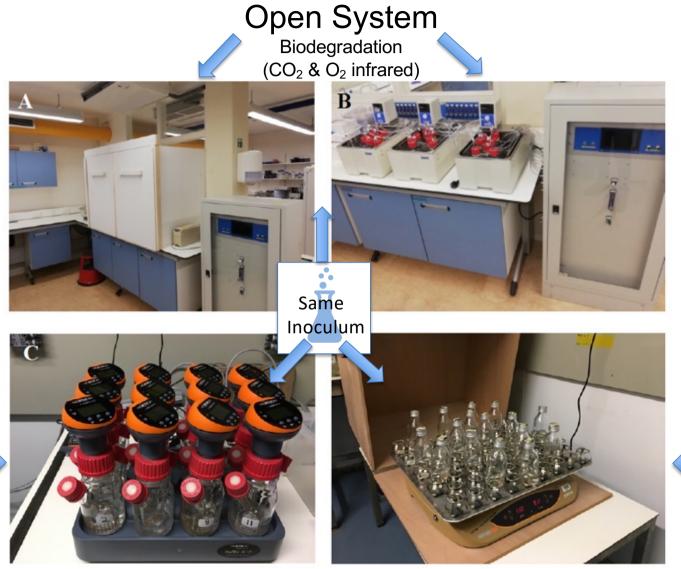
ISO/DIS 23977-1/2 Plastics

Determination of aerobic biodegradation of plastic materials exposed to seawater


BASF Germany – lead (Chong Becker) Novamont, Italy Yahata-Bussan Co., Ltd. Japan Chemicals Evaluation and Research Institute, Japan NTSQP, Beijing Technology and Business University NIOZ Royal Netherlands Institute for Sea Research

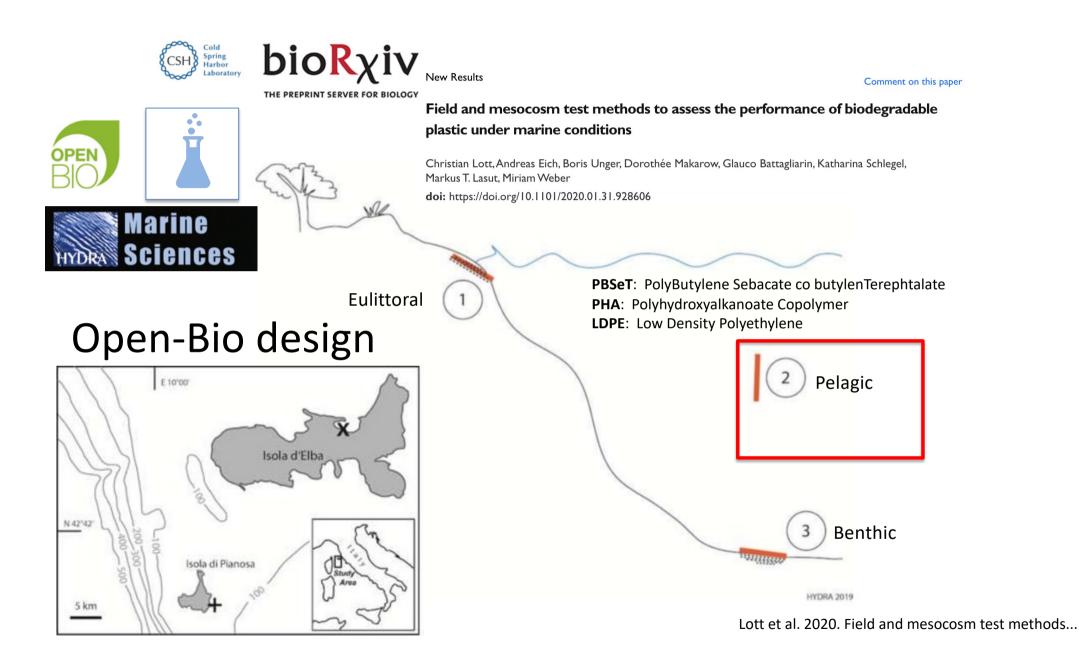
Eastman, USA OWS, Belgium

ISO 22403 Specification Requirements:


- 90 % absolute biodegradation or relative to reference material
- Test duration: Max. 24 months
- Temperature: 15 25 ° C (not exceeding 28 ° C)

materials exposed to seawater — Part 2: Method by measuring the oxygen demand in closed respirometer

ISO/DIS 23977-1/2 Round Robin Test



Parallel System

No Biodegradation monitoring (Weekly sampling for Microbial DNA Profiling & Microscopy)

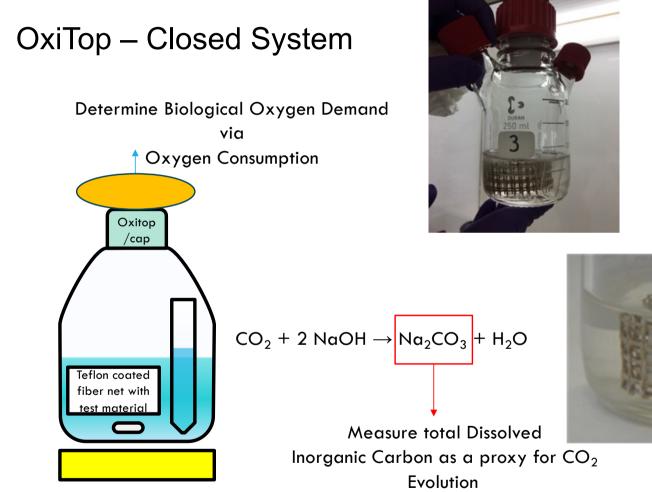
Closed System

Biodegradation (BOD & evolved CO₂ Via DIC measurement)

Date of collection: July 6, 2020 Depth of collection (m): Mid water line at the Fetovaia Beach on Elba, Italy

Appearance of Seawater sample – (turbid, clear etc.): Clear Temperature (°C): 25 °C Salinity (PSU): 38.5 TOC: 1.9 mg/L Total-N: 12.6 mg/L (after nutrient addition) pH: 8.15

No pre-conditioning process applied

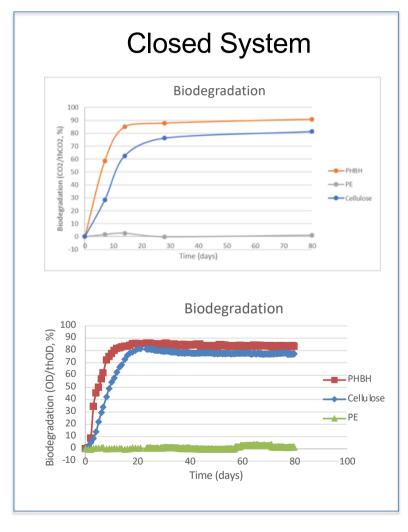


OxiTop – Closed System – 12 bottles

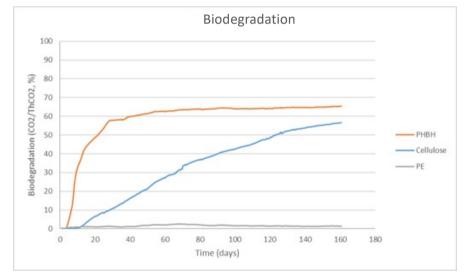
Test material	Nr. of replicates
РНВН	3
PE-LD (- control RRT)	3
Cellulose filter (+ control RRT)	3
Blank	3
Total	12

PHBH: copolymer of 3-hydroxybutryate and 3-hydroxyhexanoate) - 25-30 μm LDPE: low density polyethylene - 25-30 μm Cellulose Filter Paper: Blauband NEU filter paper - 170 μm

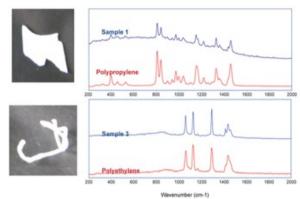
Controlled temperature Mass Flow Controller Data collection Gas Multiplexer Reactor -Mass Flow Out Air In Mass Flow Monitor flow Controller Reactor CO_2 Analyzer Mass Flow Controller Analyzer Reactor Out

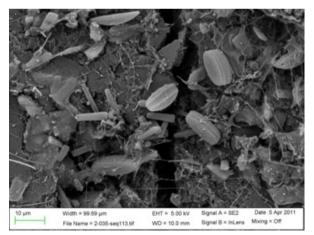

Respirometry – Open System – 20 bottles

Parallel Plastisphere Sampling Bottles – 48 bottles


Test material	Nr. of replicates
РНВН	39
PE-LD (- control RRT)	3
Cellulose filter (+ control RRT)	3
Blank	3
Total	48

ISO Round Robin Test Results

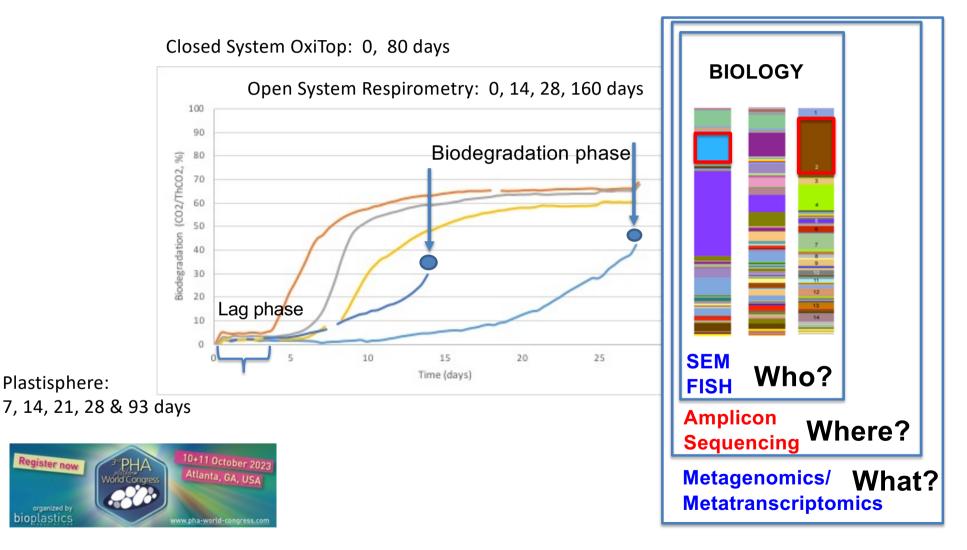



Amaral-Zettler, unpublished

Plastic identification, microscopy, molecular tools, and culturing

Raman / FT-IR Spectroscopy

Scanning Electron Microscopy



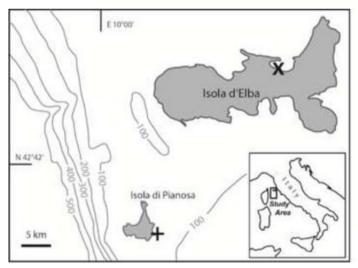
Illumina Next-Gen Sequencing

Culture Isolation

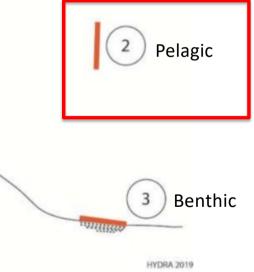
Sampling For Microbial Community Profiling

Comment on this paper

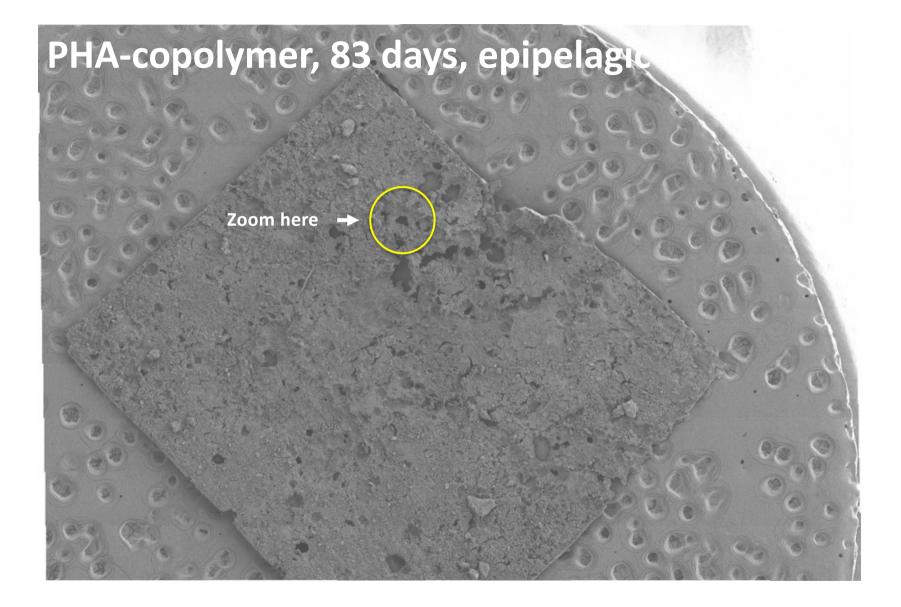
THE PREPRINT SERVER FOR BIOLOGY

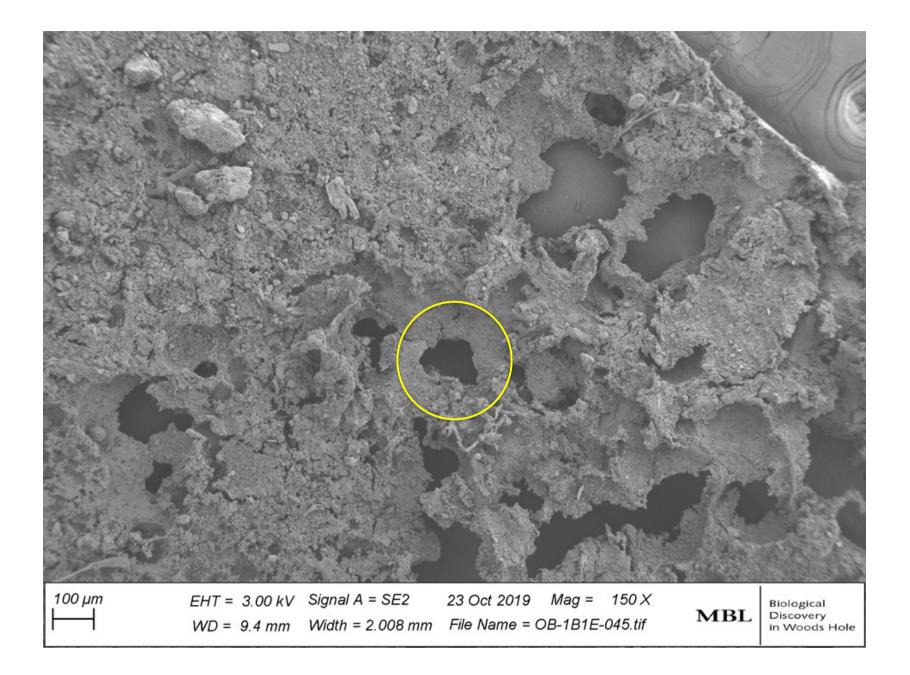

Field and mesocosm test methods to assess the performance of biodegradable plastic under marine conditions

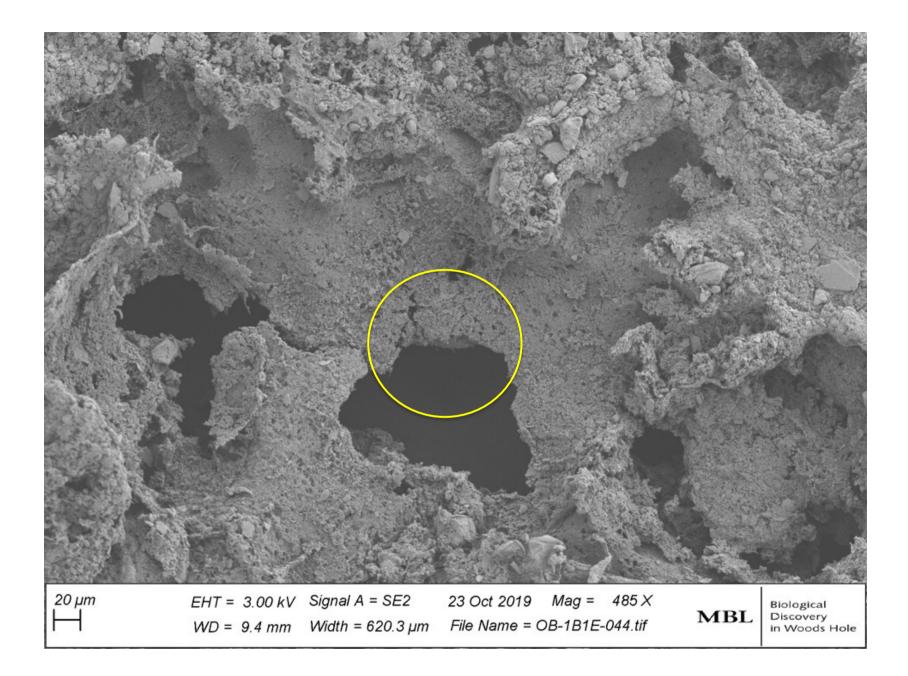
Christian Lott, Andreas Eich, Boris Unger, Dorothée Makarow, Glauco Battagliarin, Katharina Schlegel, Markus T. Lasut, Miriam Weber

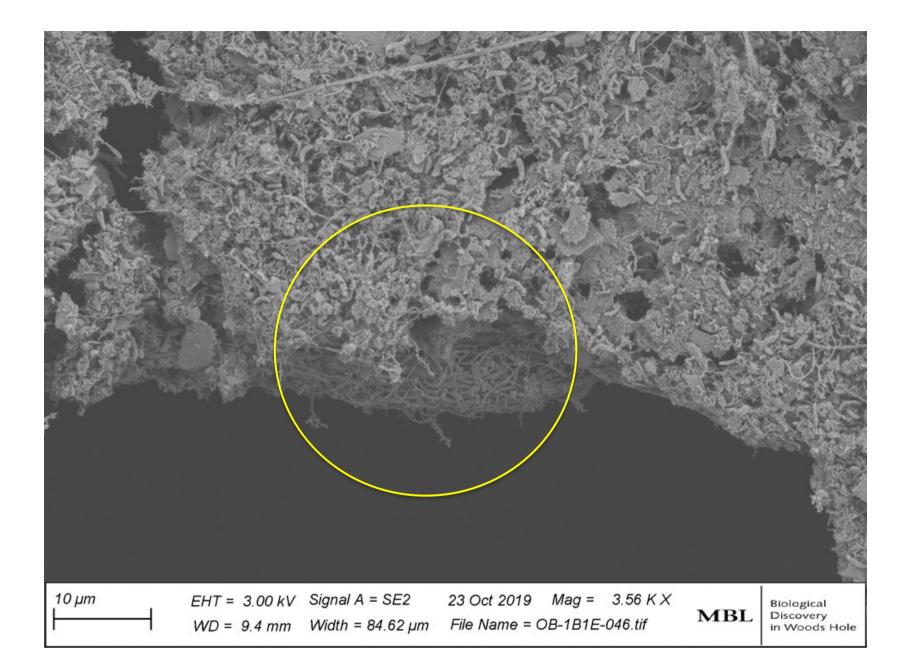

doi: https://doi.org/10.1101/2020.01.31.928606

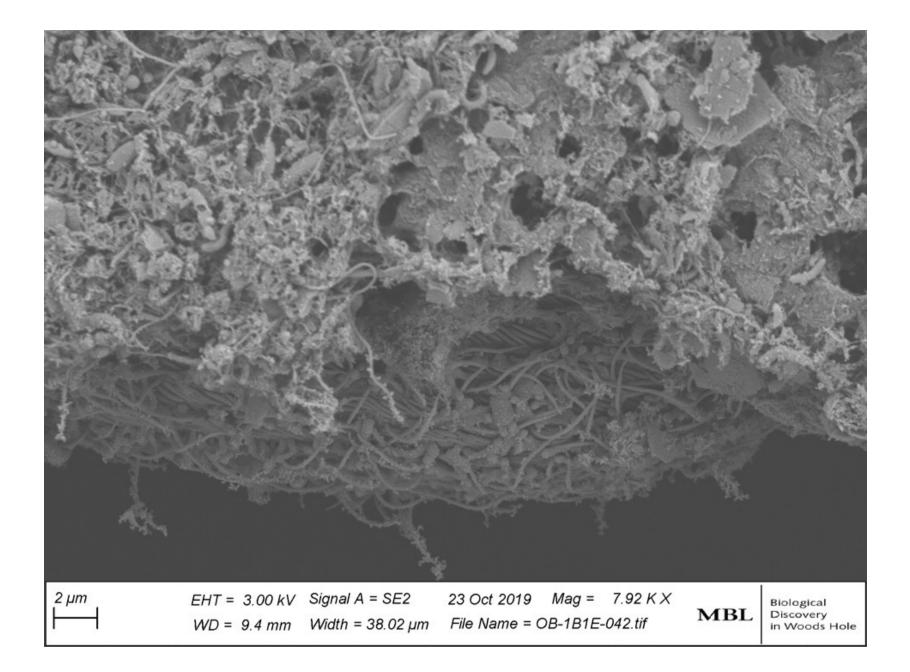
Eulittoral (

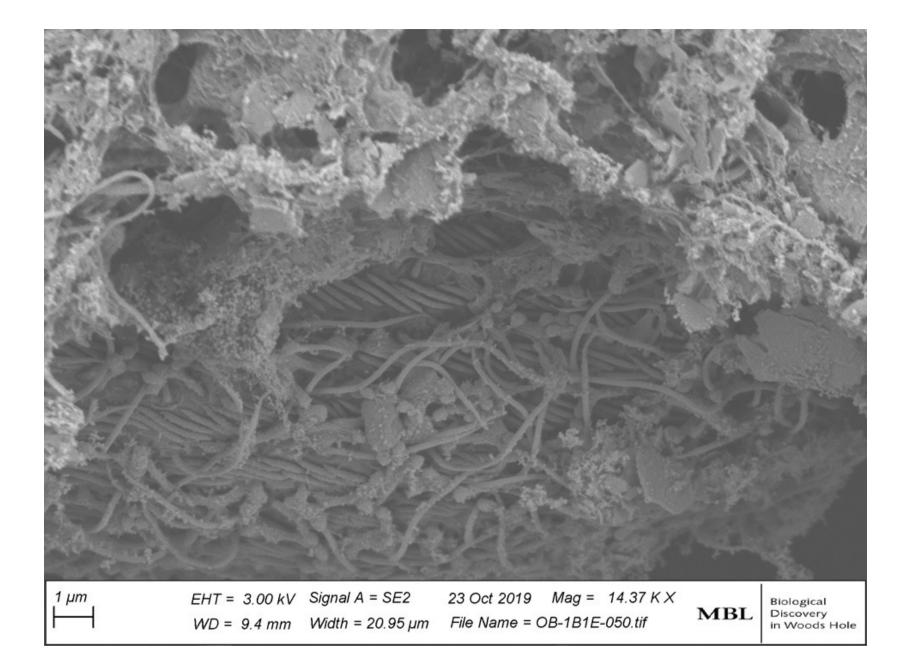

Open-Bio design

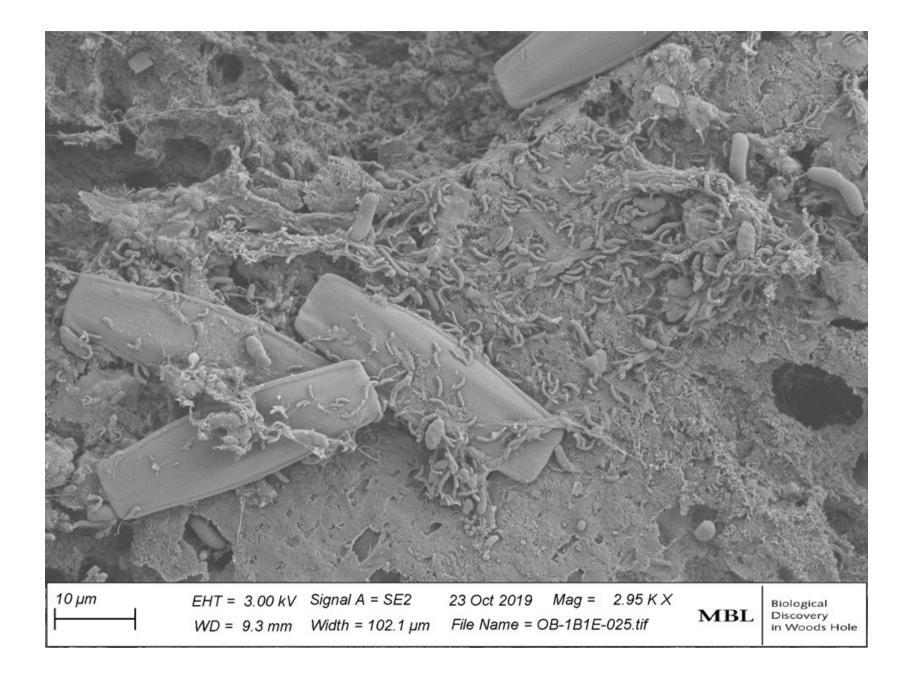



PBSeT: PolyButylene Sebacate co butylenTerephtalatePHA: Polyhydroxyalkanoate CopolymerLDPE: Low Density Polyethylene




Lott et al. 2020. Field and mesocosm test methods...





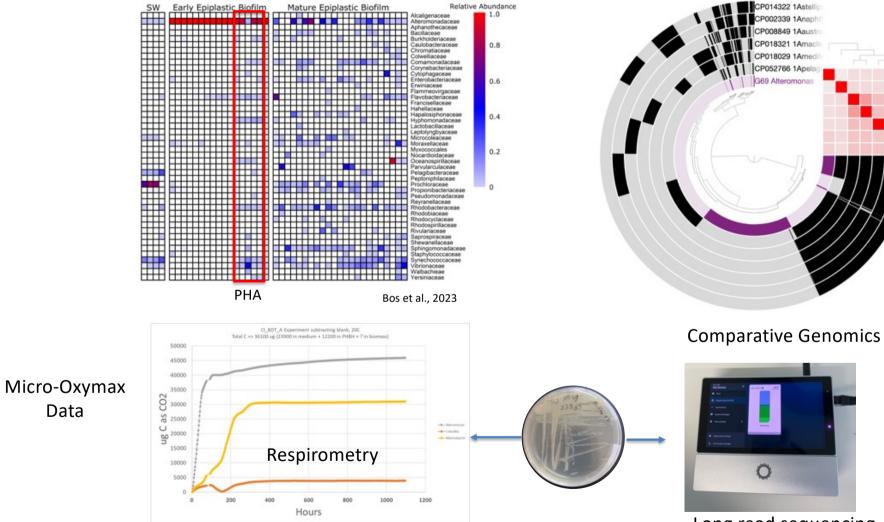
Ongoing Marine Biodegradation Studies with D6691 original defined consortium:

Columbus Instruments Micro-Oxymax

Direct CO₂,O₂ and CH₄ Measurements!

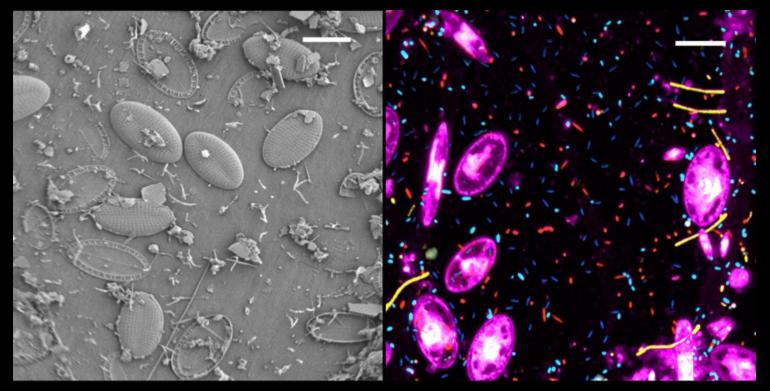
microorganisms

Article


Comparative Genomics of Marine Bacteria from a Historically Defined Plastic Biodegradation Consortium with the Capacity to Biodegrade Polyhydroxyalkanoates

Fons A. de Vogel ^{1,2}, Cathleen Schlundt ^{3,†}, Robert E. Stote ⁴, Jo Ann Ratto ⁴ and Linda A. Amaral-Zettler ^{1,3,5,*}

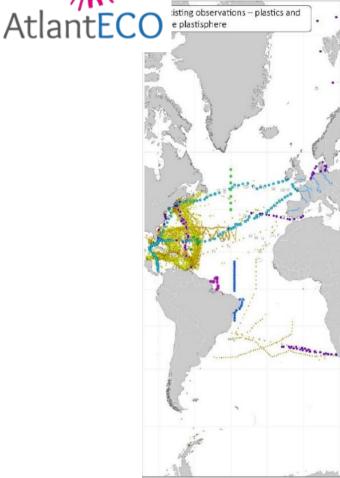
Isolate	Depolymerase Activity	Growth on PHA
Bacillus sp. NTK034	-	-
Bacillus sp. NTK071	-	-
Bacillus sp. NTK074B	\checkmark	\checkmark
Rhodobacter sp. NTK016B	-	-
Vibrio proteolyticus ATCC 15338	\checkmark	N.D.
Vibrio alginolyticus ATCC 33787	-	N.D.


	Oxyanion hole	Lipase box	Catalytic triad	
Consensus	s XXXIIXXXXIICXXX	XXXJXXIIIXXXXXX	×××®××× ××××××××××	
Protein				Species
1. PHB depolymerase PhaZ7 (Q939Q9)	TRITEVIFUEGNOD	QVIETVALSMOVSM	GFK KIQ Q G NGM G HFRTK	Paucimonas lemoignei
2. Hyp. protein Ssed 3530 (ABV38134)	NETPVIFUNGNGD	KWINHWARESLICVSM (GLHDOQLIH DGN/GLIFN/SK	Shewanella sediminis HAW-EB3
3. Lipase class 2 (ABZ77296)	TRIPVIFUNGNOD	KVINIVARSLOVSL	GLHDQDH DGMGDFNSK	Shewanella halifaxensis HAW-EB4
4. Hypothetical protein	SBOPTLFMHGLNS	KWVIWAHSKOGID	GSNOGAN/GGWNEYTIK	Bacillus sp. NTK074B
5. Lipase A (P37957)	EHNPVVMMHGIGIG	KVELVARSMOGAN	SSA DMENN H GN GELL	Bacillus subtilis strain 168
6. Thermostable lipase (Q842J9)	NDAPIVLUNGFTG	RIHIMARSQUIGQIT	LENGGIV YNVDULEII	Geobacillus zalihae T1
7. Triacylglycerol lipase (P22088)	TRYPILLWHGLSG	KVINL VGHSQCIGUS	GONEGENV YKWNELDEN	Burkholderia cepacia DSM 3959
8. Triacylglycerol lipase (Q05489)	TRYPVILWHGLAG	KVINL IGH SOLIGUT	GONDGINV YHWNDLDEN	Burkholderia glumae ATCC 6918
9. Triacylglycerol lipase (P26876)	TREYPINLARGMLIG	KVINL IGHSHCIGPIT	TANKEGHV YRMNELDEV	Pseudomonas aeruginosa PAO1
10. Triacylglycerol lipase (WP 005101273)	TIBYPILMWHOWLIG	KUNLIGHSHOGPT	KONDOM YKUNDIA	Acinetobacter multispecies
11. Triacylglycerol lipase (WP 064094572)	TROYPEN FARGMAG	KVINL I GHSHIGGPIT	KENDOGHV YNWNDLDEN	Acinetobacter multispecies
12. Triacylglycerol lipase (WP_005101276)	THE YEAR FINITE FOL	K VINL I GH SQCIG PIT	EANNIGAL MAHNEFDEN	Acinetobacter multispecies
13. Lipase precursor - EC 3.1.1.3	TIBY PTVLWHCLFIG	KVNL GHSHCGPT	GPNEGHV YQMNELDEH	◄ Vibrio alginolyticus ATCC 33787
14. Lipase precursor - EC 3.1.1.3	TIBY PIV LWHICL FIG	KVNL IGHSHOGPIT	GPSINGHIV YOMNINLDEH	 Vibrio proteolyticus NBRC 13287

Are Early Colonizers also Biodegraders?

Long read sequencing

Can we open the Biodegradation Black box?



Scanning Electron Microscopy

CLASI-FISH (Combinatorial Labeling and Spectral Imaging Fluorescence In Situ Hybridization)

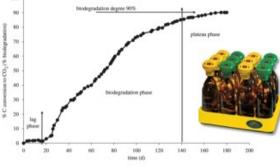
Schlundt et al. 2020

Atlantic Ecosystems Assessment, Forecasting and Sustainability

WP2: Plastic and Plastisphere data observations

WP5: Network Analysis

Amplicon Bacteria/Archaea (V4-V5) Eukaryotes (V4) Fungi (ITS)


Metagenomes

Plastics in surface waters • Van Sebille Review (1980-2010) (0-1 m) • Van Sebille Review (2010-2010) (0-1 m) Plastics & plastisphere in surface waters • Camadas Finas V (2014) (0-10 m) • Expedition 7th Continent (2015) (0-1 m) • PIRATA-BR (2018) (0-1 m) • Amaral-Zettler (2012-2018) (0-1 m) Plastics & microbiomes in arrosols • Tara microplastics (2019) (0-1 m) Plastics & microbiomes in aerosols • Tara Pacific (2016-2018) (15 m) • NAAIMES (2015-2018) (15 m) Plastics & microbiomes in sediments

eDNAbyss [2016-2018] (0-50 cm)

TransAtlantECO Biodegradation Test*

Song et al., 2009 doi:10.1098/rstb.2008.0289

Test material	No. of replicates
РНВН	3
PLA	3
LDPE	3
OXO-PE	3
Cellulose filter (+ control RRT)	3
Blank	3
Total	18

*Proposed project requires funding

Take-home Messages on Plastic Debris and Biodegradation

- There is one Ocean shared by all: litter doesn't respect EEZ's
- 2 Marine environments are not homogeneous
- 3 Out of sight shouldn't be out of mind when it comes to biodegradation
 - Reduce, Reuse, Recycle
- 5 Biodegradable plastic is a **part** of the solution to the plastic problem
- 6

4

- Proper waste infrastructure and composting facilities are required
- 7
- Global problems require global cooperation collaborative efforts across International standardization bodies

It's time to start caring about what's on the bottom of the ocean

The New Yorker

Barnes et al., 2009.

"I don't know why I don't care about the bottom of the ocean, but I don't."

THE PLASTISPHERE 1945.36

Thanks for your attention! <u>linda.amaral-zettler@nioz.nl</u> amaral@mbl.edu 2 PLASTIVORE

@plastisphe

ZUDPLANKTON

MBL Central Microscopy Facility (Woods Hole, USA) Gulbenkian Sequencing Facility (Oeiras, Portugal) University Medical Center (Amsterdam, NL) MMB department (NIOZ) Leslie Murphy, Fons de Vogel, Lia Corbett, Ryan Bos, Chris Dupont, Tracy Mincer, Erik Zettler

An Artist's Interpretation of the "Plastisphere" - Pinar Yoldas

