



# Table of Contents

| PLASTICS ARE EVERYWHERE                | 2  |
|----------------------------------------|----|
| THE GAMES PLASTICS PLAY                | 2  |
| THE FIRST PLASTICS                     | 3  |
| MACROMOLECULAR THEORY                  | 3  |
| WHERE DOES PLASTIC COME FROM?          | 4  |
| POLYMERIC STRUCTURE                    | 4  |
| BIOMIMICRY & NYLON                     | 5  |
| THERMOPLASTICS & RECYCLING             | 5  |
| THERMOSETS ARE HERE TO STAY            | 6  |
| WHAT IS PLASTIC FOAM?                  | 7  |
| BUILD A BETTER BOUNCER (MIDDLE SCHOOL) | 7  |
| NON-NEWTONIAN FLUIDS (HIGH SCHOOL)     | 8  |
| SLIME                                  | 8  |
| THIRSTY POLYMERS                       | 9  |
| MECHANICAL RECYCLING                   | 10 |
| PROTECT YOUR WATERSHED                 | 10 |
| MARINE DEBRIS                          | 11 |
| RECYCLE YOUR WRAP                      | 11 |
| BIOPLASTICS                            | 12 |
| TRANSFORMATIONAL RECYCLING             | 12 |
| WHAT'S A CIRCULAR ECONOMY?             | 13 |
| SUSTAINABLE MATERIALS MANAGEMENT       | 13 |
|                                        |    |





#### **Natural Plastics**

#### Plastics are Everywhere

Imagine a world without plastics as you learn about early natural and synthetic polymers.

Extensions

- EXPLORE: A Plastics Timeline: <u>https://tinyurl.com/y5ejotre</u>
- EXPLORE: Research smokeless gun cotton.
- EXPLORE: Hydrolysis reactions; build/draw a model of a cellulose nitrate reaction, investigate polymerization.
- EXPLORE: Look around your room, what examples of plastic can you find?
- DO: Take a week to look at your plastic usage. Take notes and points of interest to discuss during the next class.
- DEMONSTRATE: the flexibility of polymer structures. Hold one end of a beaded necklace (like the Mardi Gras beads in the video) and move the end back and forth sideways to demonstrate how easily the chain moves.

| Discussion Points                                                             | Vocabulary          |
|-------------------------------------------------------------------------------|---------------------|
| <ul> <li>Why are plastics flexible and shapable?</li> </ul>                   | Cellulose nitrate   |
| <ul> <li>What kinds of things do you use that are made of plastic?</li> </ul> | Hydrolysis          |
| What does the word plastic mean?                                              | Ozone               |
| • Do we want to, or can we live without plastics?                             | Plastic             |
|                                                                               | Polymer             |
| Career Pathways                                                               | Polymerize          |
| Chemist, Polymer Scientist                                                    | Sustainability      |
|                                                                               | Ubiquitous          |
|                                                                               | Christian Schönbein |

# The Games Plastics Play

How early natural and synthetic polymers replaced ivory billiard balls and modernized materials for the entertainment industry.

## Extensions

- EXPLORE: Investigate plastics in the entertainment industry
- EXPLORE: How much is the \$10,000 prize offered to the inventor of a new material for billiard balls in 1863 worth today?

# **Discussion Points**

What kinds of materials did plastics replace?
 Alexander Parks made the first moldable plastic by adding what to it?
 What do you think people used before the first plastic?
 Approximately, how old are plastics?
 Cellulose acetate
 Parkesine
 Shellac
 Alexander Parkes
 George Eastman
 Hyatt Brothers
 Mechanical Engineering, Injection Molding

Vocabulary





# The First Plastics

Make your own milk plastic, discover the first synthetic plastic and how chemical engineering is important in the plastics industry.

| Exte                        | nsions                                                                                                                                                                                                                                                                                |                                                                                             |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| •                           | EXPLORE: Make your own Milk Plastic: <u>https://tinyurl.com/y626264a</u>                                                                                                                                                                                                              |                                                                                             |
|                             |                                                                                                                                                                                                                                                                                       | 1                                                                                           |
| Disc                        | ussion Points                                                                                                                                                                                                                                                                         | Vocabulary                                                                                  |
| •                           | What is the most interesting plastic invention you learned about today?                                                                                                                                                                                                               | Bakelite                                                                                    |
| •                           | What was the first plastic made of?                                                                                                                                                                                                                                                   | Casein                                                                                      |
| •                           | Other than Erinoid what other material was important in the plastics<br>industry?<br>What evidence of a chemical reaction (or change) did you see?<br>What is meant by the "Fourth Kingdom"?<br>Why was formaldehyde important in the early years of synthetic plastics?<br>(HS only) | Erinoid or milk plastic<br>formaldehyde<br>pH<br>polymerization<br>polymers<br>George Davis |
| <b>Care</b><br>Chei<br>Engi | e <b>er Pathways</b><br>mist, Chemical Engineering, Color Specialist, Mechanical or Industrial<br>neer, Material Scientist                                                                                                                                                            |                                                                                             |

# Macromolecular Theory

Early polymer scientists changed the world and helped us understand the need for bold independent-thinking science pioneers.

- EXPLORE: List and draw molecules with covalent bonds—are any of them polymers?
- EXPLORE: Find the names of common synthetic polymers that we use to make everyday things.
- DEMONSTRATION: Pull Mardi Gras beads (3-4 ft in length) from a cup (as shown in video). Staudinger studied molecular weights of flexible materials and hypothesized the existence of polymers. Look at the model of beads and think about "molecular weight" of the whole chain versus each individual bead. Can you explain what Staudinger was thinking?

| • DO: List natural polymers.                                                          |                          |
|---------------------------------------------------------------------------------------|--------------------------|
| Discussion Points                                                                     | Vocabulary               |
| <ul> <li>Why are math skills important when making scientific discoveries?</li> </ul> | Aggregate theory         |
|                                                                                       | Colloids                 |
| Career Pathways                                                                       | Covalent bonds           |
| Polymer Scientist, Polymer Engineering                                                | Macromolecular compounds |
|                                                                                       | Hermann Staudinger       |





# Synthetic Plastics

#### Where Does Plastic Come From?

Plastic comes from renewable and non-renewable resources such as crude oil, natural gas, and agricultural feedstocks. **Extensions** 

- DO: Describe polymers by making a chain from strips of colored construction paper or paper clips.
- DO: Describe the process of making plastics from raw materials by making an infographic.

| Discussion Points                                                                | Vocabulary          |
|----------------------------------------------------------------------------------|---------------------|
| <ul> <li>What raw materials from the Earth are used to make plastics?</li> </ul> | Bioplastic          |
| Bioplastic play dough recipe (see page 5)                                        | Distillation column |
| Plastic play dough recipe (see page 5)                                           | Formulation         |
| • Describe the process of making plastics from raw materials to a finished       | Fossil fuels        |
| product.                                                                         | Monomer             |
| What is the difference between renewable and nonrenewable natural                | Polymer             |
| resources?                                                                       | Plastic             |
|                                                                                  | Raw materials       |
| Career Pathways                                                                  |                     |
| Chemical Engineering, Process or Manufacturing Engineer/Specialist,              |                     |
| Applications Engineer/Specialist                                                 |                     |
|                                                                                  |                     |

# **Polymeric Structure**

Monomers make up polymers, the difference between amorphous and semi-crystalline polymers, and product application engineering.

- DO: make a list of things in your house or school that are made of polymers. Are they natural or synthetic?
- EXPLORE: Good information on amorphous & crystalline polymers: https://tinyurl.com/yybsqv5u
- EXPLORE: Create a model of polymer chains using paper clips.
- EXPLORE: Manipulate polymers of a balloon with a skewer.
- FIND: The resin identification code for HDPE.

| Vocabulary                |
|---------------------------|
| Amorphous polymers        |
| Crystalline polymer       |
| HDPE                      |
| Natural polymers          |
| Monomer                   |
| Polymer                   |
| Polystyrene container     |
| Semi-crystalline polymers |
| Synthetic polymers        |
|                           |





# **Biomimicry & Nylon**

See a nylon pulling demonstration and learn that through organic chemistry nylon was created to mimic strong natural polymers.

| <ul> <li>Extensions</li> <li>EXPLORE: Provide examples of biomimicry.</li> <li>EXPLORE: biopolymer nylons e.g., Arkema's castor beans: <u>https://www.youtu</u></li> <li>EXPLORE: Find a way to compare the strength of natural silk and nylon.</li> </ul>                                                                                                                                   | ibe.com/watch?v=kpKZBLu6CjM                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Discussion Points</li> <li>What other examples of nylon can we see in everyday life?</li> <li>Read your clothing and shoe labels and find something made of nylon? Why do you think nylon was used in this item? What are the material benefits of nylon?</li> <li>Career Pathways Material Scientist, Application Engineer, Chemical Engineer, Chemist, Organic Chemist</li> </ul> | Vocabulary<br>Catalyst<br>Monomers<br>Nylon fiber<br>Polyamides<br>Polymerization<br>Adeline Gray<br>Wallace Carothers |

# Thermoplastics & Recycling

Thermoplastics can be reheated, remolded, and recycled. How single-use water bottles are manufactured and recycled.

#### Extensions

- DO: Investigate the invention of scotch tape.
- DO: How Toys are Made: <a href="https://tinyurl.com/y7qgcmpc">https://tinyurl.com/y7qgcmpc</a>
- DO: Simulate the blow molding process by blowing up a balloon.
- DO: Go on a scavenger hunt: Find non-pigmented (clear or milky white) and pigmented (colored) thermoplastics.
- DO: Investigate plastics manufacturing processes of injection molding and extrusion blow molding.
- CRITICAL THINKING: Define and compare bulk density and material density.
- WATCH: Stretch Blow Molding <a href="https://www.youtube.com/watch?v=NE4c1gwzPb4">https://www.youtube.com/watch?v=NE4c1gwzPb4</a>
- EXPLORE: What products are made of polyethylene? Research online.
- DISCOVER: Ask your family about recycling plastics and if they participate.
- READ: About thermoplastics: https://www.mnrubber.com/Design\_Guide/5-2.html

#### **Discussion Points**

- What are ways we can increase the number of plastic bottles recycled at our school or at home?
- What are some 'unconventional' uses for Post It notes and Scotch Tape?
- What are some advantages of using preforms?
- What is the abbreviation and resin code for polyethylene terephthalate?
- What is a thermoplastic? Why are most thermoplastics recyclable?
- Explain the difference between a single use item and a multiple use material.

#### **Career Pathways**

Engineer, scientist, technician in recycling or blow molding industry, Supply Chain Manager, Process Engineers, Chemistry & Design of color in plastics Vocabulary Bulk density Injection molding Monomer Polyethylene terephthalate Preform Resin Shipping volume Stretch blow molding Thermoplastic Fawsett and Gibson





# Thermosets are Here to Stay

Crosslink thermoset polymers through chemical reactions. The difference between thermoplastics and thermosets. **Extensions** 

- WATCH: Composites video from Science Bob: <u>https://tinyurl.com/y56bq3uj</u>
- DO: Make papier mache composite: <u>https://tinyurl.com/ycnu3fra</u>
- DEMONSTRATE: The epoxy reaction from the video. Wear safety glasses and gloves.
- READ: This New Type of Glue Is Activated by Magnetic Fields: <u>https://tinyurl.com/ybf5zqzr</u>
- READ: About thermoplastics <a href="https://www.mnrubber.com/Design\_Guide/5-2.html">https://www.mnrubber.com/Design\_Guide/5-2.html</a>

| Discussion Points                                                           | Vocabulary        |
|-----------------------------------------------------------------------------|-------------------|
| • Besides smell, what are other indicators of a chemical reaction? (HS)     | Celluloid         |
| • If an exothermic reaction is heat leaving the reaction, what would an     | Composite         |
| endothermic reaction be?                                                    | Chemical reaction |
| What are useful applications of thermoset plastics?                         | Cross-linking     |
| • What is evidence of the epoxy chemical reaction?                          | Ероху             |
|                                                                             | Exothermic        |
| Career Pathways                                                             | Kevlar            |
| Sales Engineer, Appliance Design, Automotive Engineer, Electrical Engineer, | Monomer           |
| Chemical Engineer, Polymer Scientist, Thermoset careers                     | Resin             |
|                                                                             | Thermosets        |
|                                                                             | Stephanie Kwolek  |
|                                                                             | John Wesley Hyatt |

**POLYMER PLAY DOUGH**: Toolkit: Wooden spoon, saucepan, parchment or waxed paper

1 cup water (Add food coloring to the water for a colorful plastic)

- 1 cup flour
- 2 teaspoons cream of tartar
- 1/2 teaspoon salt
- 1 Tablespoon cooking oil

Make a dry mix of the flour, cream of tartar and salt. Heat the water and oil until very warm to hot. Add the dry mixture into the pan and cook over low heat until a dough forms. (2-3 minutes).

Let the hot dough cool for a few minutes on a sheet of parchment or waxed paper. Then knead the warm dough for a few minutes to give it a mor elastic texture.

BIO-PLASTIC PLAY DOUGH: Toolkit: Wooden spoon, saucepan, silicone spatula, aluminum foil

- 2 Tablespoons of corn or tapioca starch
- 2 teaspoons glycerin
- 2 teaspoons white vinegar

Mix all the ingredients in a non-stick saucepan before adding heat. Then put the saucepan on a stove and heat to a boil. Stir constantly, turn the heat down so the liquid boils for 2 minutes. The texture should start as a milky liquid when cool, then move to a gel stage as it warms and finally a bubbly gel as it boils. Use a silicone spatula to remove the plastic from the pan onto a sheet of aluminum foil or into a silicone mold. When, cool, the plastic cut be cut with cookie cutters. The plastic will harden over a few days.





Processes and Material Science

#### What is Plastic Foam?

Plastic foams are used for cushioning, packaging, insulation, and shoes. See chemistry at work as we create a polyurethane foam.

# Extensions

- EXPLORE: Find or take pictures of different types of foam at home or school.
- EXPLORE: How to make an EPS cup: <u>https://tinyurl.com/y69kaftb</u>
- WATCH: Open & Closed cell foam in construction: <u>https://tinyurl.com/y6o3lsqo</u>
- DEMO: Spray Great Stuff foam insulation in different disposable containers and notice what happens. Foam expands and takes on shape of container. Follow all safety recommendations on the can!
- DO: research foams used in football helmets, hockey helmets, motorcycle helmets, martial art headgear, fall mats and similar applications. (HS)

| Discussion Points                                                                                                                                                                                           | Vocabulary                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Are foams recyclable in your community?                                                                                                                                                                     | Chemical reaction                                                                             |
| <ul> <li>What are different applications of plastic foam?</li> </ul>                                                                                                                                        | Closed foam cell                                                                              |
| • What is the evidence of a chemical reaction while the plastic foam is made?                                                                                                                               | Exothermic reaction                                                                           |
| <b>Career Pathways</b><br>Application engineers, Packaging engineers, Product or Sales Engineer<br>(Automotive, Coatings & Sealants, Construction, Medical, Packaging, Seating,<br>Sports, Toys Industries) | Endothermic reaction<br>Open foam cell<br>Polystyrene foam<br>Polyurethane foam<br>Otto Bayer |

#### Build a Better Bouncer (Middle School)

Demonstration of happy and sad balls to show energy absorption and return. Experimenting with fillers to create the "bounciest" ball.

#### Extensions

• EXPLORE: Have students bring in a ball or a sporting goods item that would help manage the energy of impact. Compare and discuss the items' design and materials purpose or usefulness.

| Discussion Points                                                          | Vocabulary        |
|----------------------------------------------------------------------------|-------------------|
| • Would you design an automotive bumper system with energy absorbing or    | Compounding       |
| energy transferring materials? Explain your thinking.                      | Cross-linking     |
|                                                                            | Energy absorption |
| Career Pathways                                                            | Energy transfer   |
| Material Scientist, Application Development Engineer, Product designer for | Polychloropene    |
| energy management (Automotive, Medical, Packaging, Sports, Transportation  | Polynorbornene    |
| Industries), Polymer Engineer                                              | Polyvinyl acetate |
|                                                                            |                   |





Vocabulary

# Non-Newtonian Fluids (High School)

Oobleck and slime, crosslinked polymers, demonstrate the difference between non-Newtonian and Newtonian fluids. Extensions

- DO: Oobleck recipe: https://www.thoughtco.com/easy-recipe-to-make-oobleck-605996
- DO: Measure the flow of honey or corn syrup at different temperatures. Does this follow Newton's Law?
- RESEARCH: Look up Newton's Law of Viscosity.
- EXPERIMENT: Test different fluids to see if they are shear thickening or shear thinning.

# **Discussion Points**

| • If viscosity is the resistance to flow, what would have a higher viscosity, | Newton's Law of Viscosity |
|-------------------------------------------------------------------------------|---------------------------|
| mountain dew or honey?                                                        | Shear stress              |
| • What are different examples of stressors? This can be from the video or     | Shear thickening fluids   |
| your own understanding                                                        | Shear thinning fluids     |
| What is a non-Newtonian fluid?                                                | Strain rate dependence    |
| • What is the difference between a compressive force and a shear force?       | Stress                    |
| What are examples of each type of force?                                      | Viscosity                 |
| • Describe the difference between shear thickening and shear thinning         | Weissenberg effect        |
| fluids.                                                                       | Sir Isaac Newton          |
| What happens to a fluid experiencing die swell?                               |                           |
| Career Pathways                                                               |                           |
| Manufacturing Engineer, Material Scientist, Mechanical Engineer               |                           |
|                                                                               |                           |

# Slime

Slime is an example of endothermic chemical reactions. Join us in the viscosity race and discover alien slime!

## Extensions

- DO: Slime recipe: <u>https://www.teachengineering.org/activities/view/uoh\_opslime\_activity1</u>
- DO: Graphing the speed of slime: <u>https://tinyurl.com/yyljr3dg</u>
- EXPERIMENT: 'Race' liquids of different viscosities of equal volumes down inclined flat surface. Examples: glue, water, putty, milk, oil.

#### **Discussion Points** Vocabulary Chemical change Is the making of slime a physical or chemical change? Is it exothermic or • Crosslinking endothermic? What are different additives that you can put in slime? Endothermic reaction • Exothermic reaction How does crosslinking polymers help keep them in place? Limiting reagent What are different characteristics of a phase change in slime? Polymer What evidence did you observe that would prove a chemical change took • Strain rate place? Viscosity **Career Pathways** Material scientist or engineer, Toy Designer, Polymer Engineer





# **Thirsty Polymers**

What are hydrophilic, hydrophobic and oleophilic polymers and their everyday uses?

**NOTE**: SPA is an eye and nose irritant. Wear safety glasses. Teacher should pass out the SPA to students.

- EXPLORE: the difference/similarities of osmosis and diffusion.
- EXPLORE: Investigate oil spills and clean up procedures.
- EXPLORE: What products are made of polypropylene? Research online.
- READ: Article on SPA and water irrigation: <u>https://tinyurl.com/yxpz85zu</u>
- READ: Super Slurper: a corn-based superabsorbent polymer: https://tinyurl.com/y5brnn65
- RESEARCH: What is the Resin Identification Code (RIC) for polypropylene?
- DO: Super Absorbent Polymer hands on experiment: <a href="https://tinyurl.com/y6lydywq">https://tinyurl.com/y6lydywq</a>

| Discussion Points                                                               | Vocabulary                |
|---------------------------------------------------------------------------------|---------------------------|
| • What are key differences between hydrophobic and hydrophilic polymers?        | Absorption                |
| • What is the abbreviation for polypropylene?                                   | Adsorption                |
| • What three plastic polymers are in a baby diaper? What purpose do the         | Chemical change           |
| polymers serve in the product?                                                  | Density                   |
| <ul> <li>What is the difference between AB-sorption and AD-sorption?</li> </ul> | Diffusion                 |
| Career Pathways                                                                 | Hydrophilic               |
| ,<br>Material scientist                                                         | Hydrophobic               |
|                                                                                 | Osmosis                   |
|                                                                                 | Permeability              |
|                                                                                 | Petrophililc              |
|                                                                                 | Physical change           |
|                                                                                 | Polyethylene              |
|                                                                                 | Polypropylene             |
|                                                                                 | Sodium Polyacrylate (SPA) |
|                                                                                 | Super-absorbent polymers  |





Take Action!

# Mechanical Recycling

Learn what happens to a water bottle after the recycling bin and what you can do for better recycling.

#### Extensions

- DO: How to recycle in your community: <u>https://recyclingpartnership.org/recycling-101/</u>
- WATCH: This MRF in action: <u>https://www.youtube.com/watch?v=4FpsH\_ETT7c</u>
- EXPLORE: Find different plastics around your house. Group them by the resin identification code.
- INVESTIGATE: The specific density of different plastics. Which will sink in water? Float?

| Dis | Discussion Points Vocabulary                                                                                                                                                    |                   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| •   | What do you think is the hardest part in mechanical recycling?                                                                                                                  | Additives         |
| •   | What does sustainability mean for plastics?                                                                                                                                     | Chemical Reaction |
| •   | Different plastics have different densities, what implication could this have                                                                                                   | Crosslinking      |
|     | for our environment and marine ecosystem?                                                                                                                                       | Density           |
| •   | Why can we separate different plastics in a water bath?                                                                                                                         | Viscosity         |
| •   | What is the name of your Waste Management (WM) company? What materials are accepted for recycling? Are recycle symbols or pictures of packaging on your WM website to help you? | Wish-cycling      |
| •   | Why don't we all recycle? How can we be change agents for more recycling?                                                                                                       |                   |

# Protect Your Watershed

Resources to understand what a watershed is and how to protect it by taking action.

- RESEARCH: What is a watershed? <u>https://www.cwp.org/watershed101/</u>
- RESEARCH: Find your local watershed. <u>https://water.usgs.gov/wsc/map\_index.html</u>
- READ: Trash free water: <u>https://www.epa.gov/trash-free-waters</u>

| Discussion Points |                                                   | Vocabulary  |
|-------------------|---------------------------------------------------|-------------|
| •                 | How does a watershed help mitigate water run off? | Stream site |
| •                 | How can you protect the watershed?                | Watershed   |





# Marine Debris

Understanding the importance of the waste management hierarchy solutions to curb marine debris around the world. **Extensions** 

- DO: Consider using a reusable water bottle and see how much of a difference in plastic you make.
- READ: The Great Pacific Garbage Patch! <u>https://www.youtube.com/watch?v=vrPBYS5zzF8</u>
- RESEARCH: The Alliance to end Plastic Waste at: <u>https://endplasticwaste.org/</u>
- RESEARCH: Search *Boyan Slat* online. Brainstorm invention ideas to help stem the tide of plastic waste.
- EXPLORE: Marine debris clean-up of U.S. rivers: <u>https://www.livinglandsandwaters.org/what-we-do/our-</u>projects/river-cleanups.html

| Discussion Points                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vocabulary                                                                           |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| •                                                               | <ul> <li>What is the difference between a single use item &amp; a multiple use material?</li> <li>What is Energy Management Recovery?</li> <li>What are the five countries that are contributing to more than half of the global marine debris?</li> <li>What are the 5 steps the Plastics Industry is implementing to help these countries reduce their waste getting into the ocean?</li> <li>What can we do in our own household, classroom, or community to reduce marine debris?</li> <li>Where does our trash waste belong?</li> </ul> | Boyan Slat<br>Energy Management Recovery<br>Gasification<br>Land-based trash sources |
| Career Pathways<br>Plastics Engineers, Inventors, Entrepreneurs |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |

#### Recycle Your Wrap

Learn how to recycle your plastic films and flexibles at local stores using symbols and sounds.

- VISIT: Learn more about recycling <a href="https://www.plasticfilmrecycling.org">https://how2recycle.info/sdo</a>
- EXPLORE: Tent made of complete plastic wrap: https://www.youtube.com/watch?v=OIYPrwQgDUc
- EXPLORE: What different objects and items could you make with plastic wrap? Write about an idea that you have where recycled plastic wrap could aid.
- EXPLORE: Have a scavenger hunt of the plastic wraps at home or school. Make a list of what can be recycled through the Store Drop off program. Teach your family about plastic wrap recycling or make posters for your school or community.

| Discussion Points                                                                                                                                                                                                                                                                                       | Vocabulary                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| <ul> <li>Where would you go to recycle your plastic wrap?</li> <li>What different kinds of wrapping can you find around your house? Think of packaging Amazon sheets and plastic wrapping around toilet paper.</li> <li>What can we do locally to encourage more recycling of plastic wraps?</li> </ul> | Material Recovery Facility (MRF)<br>Symbol-Sound-Stretch<br>Wish-cycling |
| <b>Career Pathways</b><br>Distribution, Supply Chain or Transportation Management                                                                                                                                                                                                                       |                                                                          |





The Future of Plastics

# **Bioplastics**

Renewable vs. non-renewable plastics feedstocks. What's the difference between biodegradable and compostable plastics? What's photosynthesis have to do with it?

## Extensions

- WATCH: NatureWorks Ingeo Applications Development Facility
- EXPLORE: Environmental Benefits Calculator
- DO: Find different types of packaging around your house and see if any parts may be substituted with bioplastic

| Discussion Points                                                                                                                                                                                                                                                                                                                                                                            | Vocabulary                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Why are we interested in making biopolymers?</li> </ul>                                                                                                                                                                                                                                                                                                                             | Biomass                                                                                                                         |
| <ul> <li>What is the difference between a renewable resource versus a non-<br/>renewable resource? Provide examples.</li> </ul>                                                                                                                                                                                                                                                              | Biodegradeable<br>Biopolymer                                                                                                    |
| What are some applications for biopolymers?                                                                                                                                                                                                                                                                                                                                                  | Compostable                                                                                                                     |
| <ul> <li>How can you determine if a plastic material is a biopolymer or a polymer from fossil fuels?</li> <li>What is the difference between compostable and biodegradable?</li> <li>What makes bioplastic degradable?</li> <li>Compared to traditional plastics, how long does it take bioplastics to degrade in a landfill?</li> <li>Why are bioplastics, like PLA compostable?</li> </ul> | Glucose<br>Hydrolysis<br>Lactic acid<br>Non-renewable resource<br>Photosynthesis<br>Polylactic acid (PLA)<br>Renewable resource |
| Career Pathways                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 |
| Chemist, Chemical Engineer, Polymer Engineer, Polymer Scientist, Applications                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |
| Development Engineer, Business Analyst                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |

# **Transformational Recycling**

Using chemical or thermal processes to take plastic back to its original building blocks for reuse.

- RESEARCH: Find the Transformational Recycling Center closest to your zip code.
- RESEARCH: Find examples of chemical & thermal recycling. What are challenges of transformational recycling?
- CONSIDER: Why do so many plastics become waste?
- ASK: Can you engage your school food service to collect food service plastics for recycling?

| Discussion Points                                                | Vocabulary                  |
|------------------------------------------------------------------|-----------------------------|
| <ul> <li>Why is Transformational recycling important?</li> </ul> | Advanced recycling          |
|                                                                  | Chemical recycling          |
| Career Pathways                                                  | Mechanical Recycling        |
| Chemist, Chemical Engineer, Polymer Engineer, Polymer Scientist  | Methanolysis                |
|                                                                  | Post-Consumer Recycle (PCR) |
|                                                                  | Pyrolysis                   |





# What's a Circular Economy?

Learn the difference between a linear economy of take, make and waste, vs. a circular economy of reduce, reuse, recycle.

| Extensions                                                                                                                                                               |                                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| READ: <a href="https://www.ellenmacarthurfoundation.org/">https://www.ellenmacarthurfoundation.org/</a>                                                                  |                                               |  |
| Discussion Points                                                                                                                                                        | Vocabulary                                    |  |
| <ul> <li>What are the steps in a consumption based economic model? What is<br/>meant by "structural waste"?</li> </ul>                                                   | Circular economy<br>Linear economy<br>Upcycle |  |
| Career Pathways                                                                                                                                                          |                                               |  |
| Business Analyst, Economic Analyst, Distribution and Supply Chain Analyst,<br>Public Policy maker or advocate, Social Scientist, Chemical Engineer, Material<br>Engineer |                                               |  |

## Sustainable Materials Management

The evaluation of all environmental impacts involved in the lifecycle of materials using a Life Cycle Assessment or Analysis.

- COMPARE: Find 2 similar packages, each made of a different material such as a metal soup can and a tetra-pak soup carton. Discuss the advantage of each package. Include ideas that impact the carbon footprint.
- COMPARE: Can you try to do a simplified Life Cycle Analysis of a product made from 2 different materials, such as glass versus plastic ketchup bottles?

| <ul> <li>Discussion Points</li> <li>How is Sustainable Materials Management different from a Circular Economy?</li> <li>What is a Life Cycle Analysis (LCA)?</li> </ul>                            | <b>Vocabulary</b><br>Carbon footprint<br>Life Cycle Analysis |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| <b>Career Pathways</b><br>Business Analyst, Economic Analyst, Distribution and Supply Chain Analyst,<br>Public Policy maker or advocate, Social Scientist, Chemical Engineer, Material<br>Engineer |                                                              |