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Abstract 
 

Additive manufacturing has emerged as a disruptive 

digital manufacturing technology. However, its wild 

adoption in the industry is still impacted by high entry 

challenges of design for additive manufacturing, limited 

materials library, processing defects, and inconsistent 

product quality. Machine learning has recently gained 

increasing attention in additive manufacturing due to its 

exceptional data analysis performance, such as 

classification, regression, and clustering. This paper 

provides a review of the state-of-the-art machine learning 

applications in different domains of additive 

manufacturing. 

 

Introduction 
 

The additive manufacturing sector is rapidly adopting 

machine learning and data-driven approaches to further 

extend additive manufacturing capabilities. Additive 

manufacturing is a highly complicated technology that 

involves the intricate design, material, and process 

interactions over the course of a complex multistage 

process. It requires simultaneous consideration of physics, 

chemistry, materials science, computer science, electrical 

engineering, and mechanical engineering to fabricate a 

qualified part. 

 

Additive manufacturing is a data-rich manufacturing 

technology. However, extracting practical information 

using traditional data analytics methods from the generated 

data has been an enormous challenge for this industry. 

Advanced machine learning techniques offer an 

outstanding capability to process additive manufacturing 

technology's high dimensional and complex data. 

Advanced machine learning techniques provide the 

opportunity to accelerate the additive manufacturing 

development timeline by decoding and identifying 

structure/process/property/performance relationships, 

discovering implicit (formerly unknown) knowledge, and 

transforming the existing additive manufacturing data into 

actionable and insightful information. In this paper, the 

state-of-the-art applications of machine learning 

techniques throughout the additive manufacturing 

lifecycle, from additive manufacturing material design to 

process and performance optimization, in-situ process 

monitoring and controlling, and inspection will be 

explored. 

 

Machine Learning Techniques for Additive 

Manufacturing 
 

Machine learning is an application of artificial 

intelligence that provides the systems with the ability to 

learn and improve from experience and data automatically. 

Machine learning models can be used for different 

purposes, such as classification, regression, forecasting, 

and optimization. 

 

Machine learning algorithms are often categorized as 

supervised or unsupervised [1]. Supervised machine 

learning algorithms can uncover insights, patterns, and 

relationships from past experiences and apply the learned 

knowledge to predict future events. Starting from the 

analysis of a known training dataset, the learning algorithm 

produces an inferred function to make predictions about the 

output values. The system can provide targets for any new 

input after sufficient training. The learning algorithm can 

also compare its output with the correct, intended results to 

modify the model accordingly.  

 

In contrast, unsupervised machine learning algorithms 

are used when the information used to train is neither 

classified nor labelled. Unsupervised learning studies how 

systems can infer a function to describe a hidden structure 

from unlabelled data. The system does not recognize the 

right output; however, it explores the data and can draw 

inferences from datasets to describe hidden structures from 

unlabelled data. 

 

The supervised and unsupervised categories provide a 

high-level classification in which different machine 

learning algorithms can be further categorized. The 

decision between using a supervised or unsupervised 

machine learning approach will depend on the nature of 

each specific application. 

 

Data-Driven Additive Manufacturing 
 

The major distinctions between data-driven and 

conventional manufacturing are the generation, collection, 

and utilization of data, which have been considered as the 

key enabler to realize smart manufacturing [2]. In 

conventional manufacturing, by using theoretical, 

experimental, and numerical methods, human intelligence 

along with the experiences gained from the physical 

observations of the manufacturing system, derive physical 

models to better understand the mechanisms. However, due 



 

 

to the significant simplifications and assumptions for 

deriving physical models, also potentially unstable, biased, 

and partial experiences, these model-based methods can 

have limited effective range and accuracy [3]. In data-

driven manufacturing, however, data generated through 

different steps of the manufacturing process is fully 

exploited to refine the manufacturing process and increase 

the flexibility and autonomy of the system. By taking full 

advantage of manufacturing data, the system is shifted from 

primary processes to smart processes, improving the 

production efficiency and the performance of a product [4]. 

 

A framework of data-driven additive manufacturing is 

presented in Figure 1. This framework is comprised of four 

modules: manufacturing, data, knowledge, and decision-

making. The manufacturing module contains different 

stages of the design-to-product transformation cycle, in 

which a printed product is designed, manufactured, 

characterized, and inspected. In this module, various data 

is collected from human operators, production equipment, 

information systems, and industrial networks. In the data 

module, the manufacturing data is collected, stored, and 

visualized for the preparation of data processing. The data 

module provides the driving force for smart additive 

manufacturing throughout the different manufacturing data 

lifecycle stages. In the knowledge module, raw data is 

transformed into actionable insights and knowledge using 

data processing technologies to direct the actions (e.g., 

product design, production planning, and manufacturing 

execution) in the manufacturing module. In the decision-

making module, through the utilization of intelligence, 

knowledge eventually informs decisions to make accurate 

and smart design, optimization, prediction, control to 

facilitate smart manufacturing.  

  

 

 

 

Figure 1. Data-driven additive manufacturing framework 

 

 

 

Applications of Data-Driven Additive 

Manufacturing 

 
Additive Manufacturing Design 
 

The additive manufacturing design stage is comprised 

of several functions, including product design, tolerancing 

and manufacturability, and materials design and selection. 

 

Product Design: Product design is the first and very 

critical step in additive manufacturing processing. 

However, there are always deviations between the design 

models, and the printed parts and compensation is usually 

performed to obtain a final product with high accuracy. 

Different approaches for the part geometric design 

accuracy have been proposed, combining experiments, 

finite-element method simulation, and machine learning 

algorithms, which help counterbalance thermal shrinkage 

and deformation in the manufactured part. The machine 

learning model is trained to learn the effect of the 

processing parameters and make the required geometric 

corrections on the product design, which results in a 

dimensional-accurate finished product [5,6]. Machine 

learning techniques have also been used to predict the build 

time [7] and develop cost-estimation frameworks for 

additive manufacturing processes [8].  

 

Design Tolerancing & Manufacturability: 

Tolerancing the product designs can be assessed using 

machine learning techniques to estimate geometric 

deviation patterns by statistical learning from different 

shape data and supporting more accurate tolerances for 

additive manufacturing parts [9]. Researchers also are 

using machine learning to assess the manufacturability of 

design models. Deep learning is used to learn different 

Design for Manufacturing rules from labelled voxelized 

CAD models, without additional shape or process 

information [10].  

 

Materials Design and Selection: Material selection 

impacts the physics of additive manufacturing from start to 

finish, from the interactions of energy sources with the 

material to the final parts' performances. However, the 

range of materials for additive manufacturing processing is 

very limited and developed materials for traditional 

manufacturing techniques are not suitable for additive 

manufacturing.  

 

Designing materials for additive manufacturing, either 

altering the chemistries of known materials or discovering 

new ones, requires considering the material properties' 

implications with additive manufacturing processing. 

Machine learning techniques have great potentials to 

uncover knowledge about the fundamental physical, 

mechanical, electrical, electronic, chemical, and 

engineering properties of materials. Machine learning 



 

 

approaches utilize analytical forms that can significantly 

accelerate the prediction and optimization process in 

materials design compared with other computational 

methods. Recently, studies have shown that machine 

learning can be used as a promising tool to accelerate the 

inverse-design process of materials. Inverse design 

approaches generate suitable material designs with a given 

set of desired properties or functionality, from property to 

structure.  

 

Additive Manufacturing Process 
 

The mapping of process, structure, property, and 

performance relationships is significantly important for the 

process parameter selection and optimization of additive 

manufacturing parts' performance. This relationship is 

often significantly nonlinear due to the high numbers of the 

input variables, and it is challenging to identify the 

underlying mathematical formula. 

 

Machine learning techniques have a robust capability to 

successfully discover complex process-structure-property-

performance relationships, overcoming many of the 

conventional analysis methods' limitations. The scope of 

such techniques generally focuses on understanding either 

process response or performance response by using a data-

driven approach or a combination of both physics-based 

and data-driven techniques. Table 1 summarizes the 

application of machine learning models used for the 

additive manufacturing process and performance 

optimization.  

 

Additive Manufacturing Monitoring and Control 
 

In situ monitoring, feedback, and control has been 

consistently ranked as one of the most-needed technologies 

for additive manufacturing. The combination of rapid 

solidification and the small length scales of additive 

manufacturing solidification can make traditional process 

monitoring approaches difficult. Process monitoring 

involves acquiring real-time signals that can reveal 

information about a wide variety of phenomenon and 

product quality during manufacturing. Accurate and 

simultaneous analysis of these real-time signals can lead to 

complete closed-loop control. Machine learning models 

can predict the state of the final part by using these signals 

to characterize a part's current state.  

 

Current efforts towards using machine learning for real-

time control for additive manufacturing processes 

primarily focus on monitoring the state of either the built 

part or the additive manufacturing machine (machine 

monitoring) itself. In the latter approach, the in-situ 

monitoring is performed by observing the machine logs or 

build conditions instead of monitoring the part. Machine 

learning models can extract time and frequency domain 

features from machine logs using acoustic data to identify 

normal and abnormal machine states [25,26]. This 

monitoring method can be used as a diagnostic tool to 

identify failures.  

 

Developments in in-situ monitoring control will 

significantly enhance part defect detection and prediction 

in additive manufacturing processes. Additive 

manufacturing parts can have different types of defects, 

including porosity, poor surface finish, layer delamination, 

cracking, and geometric distortion. Through traditional 

offline inspection methods, the identification of defects can 

be subject to inaccuracy, inconsistency, and delays. Studies 

have explored establishing effective and reliable in-process 

detection of defects for a framework of zero-defect additive 

manufacturing processes by using advanced machine 

learning and data mining techniques. Different machine 

learning models using visual data, acoustic data, and multi-

sensor data have been developed to analyze underlying 

patterns and features within datasets and detect multiple 

and different types of defects (porosity detection [27], 

quality of fusion and defect detection [28], anomaly 

detection and classification [29], melt pool features and 

spatter detection [30], defect detection and classification 

[31], fault detection from multi-sensor data [32], quality 

monitoring using heterogeneous sensors [33], defect 

detection for LPBF using in-situ images coupled with ex-

situ CT scans [34]). Improving real-time control of additive 

manufacturing processes also has the benefit of minimizing 

the post-processing and inspection tasks. 

 

Conclusion and Future Developments 

 

The development, integration, and application of 

machine learning and data-driven approaches into the 

additive manufacturing product lifecycle can address many 

of the issues currently facing the technology's 

advancement. The high dimensionality and complexity of 

additive manufacturing data make it well-suited for popular 

machine learning algorithms. While machine learning 

techniques are rapidly being adopted into additive 

manufacturing applications, there are many opportunities 

for improved future work. Success in applying data-driven 

approaches is significantly dependent on the availability 

and quality of the training data. Machine learning 

algorithms perform poorly at diagnosing conditions 

without enough data to signify a prediction pattern. This 

limitation should be addressed by collecting data from 

different processing scenarios representing a wide range of 

operating conditions and dimensionality space.  

 

Another significant challenge in the advancement of 

machine learning for additive manufacturing is the lack of 

accurate, accessible, and extensive databases for additive 

manufacturing processes, products, and materials. While 

each build can generate terabytes of data, there is a lack of 

standard practices for handing datasets characterized by 

high volume and velocity in real-time. The absence of a 



 

 

common data structure, and standard methods for data 

integration and fusion, prevents rich, multifaceted, data-

driven analysis.  

 

Also, generating high-quality data via experimentation 

is difficult and expensive. The data must be collected with 

the highest care and precision since low quality or 

incorrectly-inconsistently labelled data hinders feature 

selection for machine learning models. The development of 

libraries for additive manufacturing feature 

characterization would also help address some of the 

current challenges that make it difficult to select a suitable 

machine learning algorithm compatible with the available 

data.  

  

 

Table 1. Machine learning applications in additive 

manufacturing processes 

Tech 
Target 

Property 
Processing Parameters Ref. 

SLS Density  
Laser power, scan speed, scan 

spacing, layer thickness 
[11] 

SLS Dimension 
Laser power, scan speed, scan 
spacing, layer thickness   

[12] 

SLS Build time  Z height, volume, bounding box  [13] 

SLS 
Shrinkage 

ratio  

Laser power, scan speed, hatch 

spacing, layer thickness, scan 
mode, temperature, interval time  

[14] 

SLS 
Open 

porosity  

Layer thickness, laser power, scan 

speed  
[15] 

SLS 
Tensile 

strength 

Laser power, scan speed, hatch 

spacing, layer thickness, powder 

temperature  

[16] 

SLS Density 

Laser power, scan speed, hatch 

spacing, layer thickness, scan 

mode, temperature, interval time  

[17] 

SLA 
Dimensional 
accuracy  

Layer thickness, border overcure, 

hatch overcure, fill cure depth, fill 

spacing and hatch spacing  

[18] 

FDM 
Compressive 

strength 

Layer thickness, orientation, 

raster angle, raster width, air gap 
[19] 

FDM 
 Wear 
volume 

Layer thickness, orientation, 
raster angle, raster width, air gap 

[20] 

FDM 
Volumetric 

error 
Orientation, slice thickness  [21] 

FDM 
Dimensional 

accuracy  

Layer thickness, orientation, 

raster angle, raster width, air gap  
[22] 

FDM 
Dimensional 

accuracy  

Layer thickness, orientation, 

raster angle, raster width, air gap  
[23] 

BJ 
Surface 

roughness 

Layer thickness, printing 
saturation, heater power ration, 

drying time  

[24] 

BJ 
Shrinkage 

rate (Y-axis)  

Layer thickness, printing 
saturation, heater power ration, 

drying time  

[24] 

BJ 
Shrinkage 

rate (Z-axis) 

Layer thickness, printing 
saturation, heater power ration, 

drying time  

[24] 

SLS: Selective Laser Sintering, SLA: Stereolithography 

FDM: Fused Deposition Modeling, BJ: Binder Jetting 
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