SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Experimental Evaluation of the Orientation of Long Semi-Flexible Glass Fibers in Complex 3-Dimensional Flow
John T. Hofmann, September 2013

The experimental orientation of long semi-flexible glass fibers has been evaluated in complex 3-dimensional flow. Preliminary experimental values of long-fiber orientation were obtained within injection-molded end-gated plaques at multiple percentages of plaque length and width including in the areas of complex flow near the mold side walls. Additionally experimental values of orientation were obtained within the sprue and gate region of the injection molded parts. Modification of the experimental method for measuring fiber orientation in these regions due to the increased length and flexibility of long fibers is included.

A Method for Characterizing Fiber Length Distribution in Random Fiber Composites
Tim Latimer, September 2013

It is well known that retained fiber length in random fiber composite materials relates directly to the mechanical properties. Longer fibers lead to higher aspect ratios that increase stiffness and strength as well as enhance the creep and fatigue properties. Direct compounding of thermoplastics promotes fiber length retention by the use of continuous glass fiber in the compounding process. In the same way pre-compounded long fiber pellets provide increased fiber length relative to traditional short fiber injection molding compounds but perhaps not to the extent of direct compounded methods. Despite the known fiber length retention characteristics of these various materials and processes via qualitative analysis and examination of resultant mechanical performance a rapid and robust quantitative fiber length characterization method seems to have eluded the industry to date. Time consuming counting of individual fibers randomly selected from samples seems to be the norm. Based upon these limitations and needs a method to rapidly characterize the fiber length distribution in random fiber composites was investigated. The experimental procedure is discussed and the results to date are presented.

Improvement in Orientation Measurement for Short and Long Fiber Injection Molded Composites
Gregorio Vélez-García, September 2013

Short-fiber-reinforced thermoplastics are a feasible alternative to develop lightweight materials for semi-structural applications. These materials present a layered structure showing a complex fiber orientation distribution along the molding. The details of fiber orientation in a center-gated disk with diameters of 1.38 and 2.05 mm were obtained in several regions including the gate and advancing front. Several modifications were introduced in the method of ellipses to obtain unambiguous orientation measured over small sampling area. Two fiber suspensions (30 % short glass-fiber PBT and PP) with different rheological characteristics were used in these experiments. The results showed an asymmetric distribution of fiber orientation that gradually washs out as the flow progress. In addition the initial orientation measured at the gate presented a fiber distribution different from the random orientation that is assumed in literature for a center-gated disk.

Multi-Scale Modeling of High Cycle Fatigue of Chopped and Continuous Fiber Composites
Kurt Danielson, September 2013

Two micro-mechanically based composite fatigue models are introduced in this presentation. The focus is on the high- cycle fatigue model implemented specifically for chopped- fiber-reinforced plastics. Its application for a Toyota Motor Europe automotive oil-cooler bracket made of a nylon 6/6 material reinforced by short-glass fibers will be presented. Through this case study the presentation aims to show how the use of proper fatigue-modeling tools developed specifically for composites can increase the accuracy of simulation in the field of durability and pave the way for new simulation standards towards the desired lightweight reductions.

Evolution of an Excellent Lightweighting Tool – PUR Sandwich Composites
Mike Super, September 2013

This presentation details how polyurethane spray sandwich technology originally developed for sunshades has been improved for use in more demanding applications such as load floors and parcel shelves. Polyurethane sandwich construction combines the low weight of a honeycomb core with the high strength of a fiber-reinforced polyurethane skin to produce load-bearing parts with very-high flexural stiffness and excellent thermal properties making it an attractive lighter weight alternative to ABS polypropylene sheet-molding compound (SMC) and wood products. Information on the deflection performance of different constructions with different systems including some with natural and some with glass mats will be given to guide manufacturers on the best ways to hit specific targets such as cost thickness or weight. Newer formulations enable productivity improvements including longer open times and shorter demolding times which facilitate production of larger parts and reduced scrap as well as feature higher bio-renewable content than previous versions.

Three Dimensional Predictions of Fiber Orientation for Injection Molding of Long Fiber Reinforced Thermoplastics
Ken (KC) Cheng, September 2013

Long fiber-reinforced thermoplastic (FRT) composites in automotive industrial fabrication are of critical requirement -- more so than short FRTs. The FRT products’ mechanical properties and warpage are dominated by fiber orientation within the part. This presentation will discuss a recently proposed new fiber orientation model for improving the prior developed models with regard to interaction and diffusion of the fibers immersed in a matrix namely iARD- RPR (Improved Anisotropic Rotary Diffusion model combined with Retarding Principal Rate model). The iARD-RPR model has been demonstrated to describe changes in fiber orientations well whether treating short fibers or long fibers. In this study 40 wt% glass-fiber immersed in polypropylene matrix was injection molded in a center gated disk and then predicted fiber orientation distribution pass the thickness was compared with measured results. Good agreement with experimental observations was achieved.

Assessment of the Slowdown in Fiber Orientation Evolution in a Center-Gated Disk
Gregorio Manuel Vélez-García, September 2013

Recent modifications to the standard Folgar-Tucker model aim to slow down the evolution of fiber orientation and have been shown to improve orientation predictions in shear flow experiments. However assessment of these models in injection-molded geometries in which shear and extension are both present is very limited. In this work researchers have assessed the evolution of orientation using the newly developed models in a center-gated disk which provides a good injection molding test case combining both shear and extension.

A Method for Developing Composite Beam Structures that are Optimized for Energy Management using Non-Linear Topology Optimization
Ram Iyer, September 2013

A methodology utilizing a non-linear topology-optimization technique was applied to develop designs of mass- efficient composite beam structures. The traditional linear optimization technique is shown as suitable to develop designs that are maximized only for part stiffness. Non- linear effects like plasticity and material failure are not taken into consideration using linear techniques and hence the suitability of the linear-optimization technique can prove to be inadequate for applications that require energy management. Non-linear topology optimization using the software tool LS-Tasc from LSTC uses fully non- linear LS-Dyna simulations to arrive at the optimized design shape. Plasticity material damage and failure and load path variation on account of contact are taken into consideration as is typical with non-linear LS-Dyna simulations. The optimization process tracks the contribution of each element in the finite-element model of the design space to the stated objective and performance constraints to determine the ideal load path and hence the part shape. Development of the beam structure designs using this methodology results in design shapes that can be optimized for energy management rather than stiffness.

Scaling Down Methodology for Composite Cab Front Prototype Using Resin Transfer Moulding Process
Swati Neogi, September 2013

Most industrial composite parts that are large and complex in geometry are manufactured by the hand layup method. The resin transfer moulding (RTM) process is a better substitute but is not used readily due to the lack of proper manufacturing technology. Development of a proper RTM manufacturing process for a specific application requires a proper mould design. In addition the difficulty in the tooling design and mould fabrication cost increases with size and complexity of the component. The scale down strategy of full scale product avoids bigger size mould requirements prototype production for product testing and quality check at the starting phase of product development. Moreover the scale down strategy can be used to validate the process and the product with less capital input. In this work we propose a methodology to develop a scaled down prototype for a large and complex composite structures based on virtual simulation technique keeping the mold fill time and mold fill pattern unchanged. The methodology has been demonstrated taking a composite cab front that is currently used by the hand layup technique as case study. From the simulations and actual experiments it was found that the injection pressure at the full scale model has to be reduced to the times of reciprocal of square of geometrical mould scale down factor to meet the same mould fill time and mould fill pattern keeping the injection strategy the same.

A Case Study—SMC Consistency: A Data-Based Technique to Quality Improvement
Probir Guha, September 2013

A method to identify root causes of manufacturing quality defects has been developed that allows for the implementation of process and material improvements via a databased analysis system known as “The SMC Consistency Method.” In 2006 a statistical method that ties SMC molding parameters to process and raw material parameters was introduced. The following year an SMC viscosity improvement effort using this method was announced. The current paper presents additional examples that have identified root causes of material and process variations that have resulted in sporadic defects in the molded product. The case study will show how defect data from the molding plant was successfully used to identify key molding compounding and raw material factors. The SMC consistency method utilizes actual production data as opposed to the use of data generated by conducting special DOEs.

Damage and Failure Mechanism Study of Composite Crushtubes during Axial Crush through Progressive Failure Dynamic Analysis
Frank Abdi, September 2013

Carbon fiber-reinforced polymer (CFRP) is considered to be a good candidate for energy absorption due to its high specific energy absorption (SAE) as the ratio of energy absorbed by the tube mass. However composite damage distribution in the components should be carefully designed to confine damage progression in the load application region and prevent any premature catastrophic failure. This presentation addresses different damage and failure modes triggered in composite crush tubes that have different ply orientation angles. The modeling strategy is validated by experimental quasi-static crush tube experiments and the study contains a comprehensive damage-mode tracking in each ply to identify the effectiveness of the candidates. The correlation between the damage propagation is compared with the overall crash response in terms of crush load vs. crush displacement.

Compatibilizer Additives for Improving the Delamination Resistance of PET/Pa-MXD6 Multilayer Coinjection Stretch Blow Molded Bottles
Kris Akkapeddi, May 2013

The delamination resistance of multilayer PET/ PA-MXD6 coinjection stretch blow molded bottles was found to be significantly improved through the use of small amounts of specific dual-functional compatibilizer additives, blended into the nylon layer during the sequential coinjection molding step. Such modified multilayer PET bottles resist delamination even under stress-concentrated impact testing conditions.

The Effect of Coathanger Die Manifold Symmetry on Layer Uniformity in Multilayer Coextrusion
Joseph Dooley, Hyunwoo Kim, Patrick C. Lee, Robert Wrisley, May 2013

Multilayer coextrusion is a process in which two or more polymers are extruded and joined together in a feedblock or die to form a single structure with multiple layers. This paper will discuss the effect of die manifold channel symmetry of the flow of coextruded structures through coathanger style dies.

Innovative Waterborne & UV Resins for Plastics & Automotive Interior Applications
Mouhcine Kanouni, Robert Harrer, Philippe De Groote, Anton Arzt, Marcus Hutchins, May 2013

Innovative Waterborne & UV Resins for Plastics & Automotive Interior Applications

Wetting Measurements for Rapid Qualification of Surface Preparation Processes
Giles Dillingham, May 2013

Surface treatments of metals and polymers are frequently necessary to control properties such as adhesion of paints and sealants. Because surface properties are determined by only the uppermost few molecular layers, measuring these properties in manufacturing environments can be challenging. Water contact angles can be obtained very rapidly and conveniently and provide sensitive, quantitative feedback of surface properties important for adhesion.

Ensure Safe Operation of the GRP Lining Between Overhaul Period
Valeriy G. Makarov, Rakhil Sinelnikova, May 2013

Application of the electrical resistant and diffusion laws is effective way of the estimation of the ensure safe operation of the GRPL between overhaul periods and increase reliability of the technological equipment of concrete, steel or high filler plastic.

Determination of Thermal Conductivity for Industrial Applications
Maximilian Bader, Dirk Schmiederer, Ilonka Maier, Carsten Tuechert, May 2013

The thermal conductivity of various thermally conductive thermoplastics commercially available was determined experimentally and is compared with da-tasheet values. It was found that in most cases the thermal conductivities in-plane and through-plane deviate substantially from the manufacturers' values. The rea-sons as different measurement methods, part geometry and specimen preparation are discussed in detail in this paper. Finally the use of standardized methods is recommended.

Thermal and Morphological Behavior of PLA/PBS/CSW Blends Processed by Vane Extruder
Rongyuan Chen, Jinping Qu, Chengran Wu, Shikui Jia, Zan Huang, Zhitao Yang, May 2013

This work focused on the study of thermal and morphological behavior of degradable poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) and Calcium Sulfate Whiskers (CSW) blends processed by Vane extruder, which is a novel equipment for polymer processing. Different from the shear force field of traditional Screw extruder, the blends produced in elongation force field of Vane extruder were investigated through analytical techniques correlated to their morphology and thermal properties.

Novel Poly (Lactic Acid) Based Emulsion
Naoko Oda, Hideki Tanaka, May 2013

ANTEC 2013 Technical Paper - Biodegradable and biomass base polymers are gaining attention from the view of environmental concern. In this report, novel poly (lactic acid) based multibranched polymers self-emulsified in 100 % water are described.

Comparison between Non-Isothermal Growth Rates of Nodular and Spherulitic Structures of Isotactic Polypropylene
Yousef A. Mubarak, May 2013

Non-isothermal crystallization growth rates of isotactic Polypropylene were determined by Polarized Light Microscopy. For molten isotactic Polypropylene with temperatures <195°C and above its melting temperature, nodules and spherulites morphological formations were obtained from a melt crystallized non-isothermally at different cooling rates. The results show non-linear growth rates for both morphological formations while the spherulite growth rate is higher than the nodule.







SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use

Links

Locations

SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net