SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Synthesis and Characterization of Polyacrylamidechitosan Hydrogels
Pedro Ortega-Gudiño, Juan C. Sánchez-Díaz, Fausto Becerra, Agustín Martínez-Ruvalcaba, Alejandro González-Álvarez, May 2007

Polyacrylamide/chitosan hydrogels were synthesized in aqueous itaconic acid solution (1% w/w), in order to determine its swelling kinetics at various chitosan concentrations. Analysis of the hydrogel swelling behavior indicated that the network properties of the gel changed depending on the swelling pH, as well as the amount of chitosan, showing a decrease in swelling capacity when the chitosan concentration was increased; this behavior can be explained due to the presence of the chitosan ionic groups.

Dynamic Mechanical and Dielectric Properties of Polypropylene Nanocomposites
Syh-W. Huang, Yeh Wang, May 2007

In this work we report on the investigation of the dynamics of maleic anhydride grafted polypropylene (PPgMA) and PPgMA-based nanocomposites by means of dielectric relaxation spectroscopy (DRS) and dynamic mechanical thermal analysis (DMTA). We study the effects of different PPgMAs on the miscibility with the organoclay, and examine the effect of organically modified silicate filler on the dynamics of PPgMA. Our results suggest that the _-relaxation process, corresponding to the glass transition of PPgMA, is significantly affected by the clay loading. The increase in Tg is a direct result of polymer-filler interactions that reduce the polymer chain mobility. Furthermore, in the nanocomposite materials a separate high-temperature process due to Maxwell-Wagner-Sillars (MWS) polarization was observed with dielectric relaxation spectroscopy.

Efficiency of Graphite Additives on Friction and Wear Properties of Sintered Polyimide
Pieter Samyn, Jan Quintelier, Gustaaf Schoukens, May 2007

The lubricating effect of graphite additives depends on the moisture content: under dry conditions graphite provides high friction and needs water molecules for smooth sliding. When used as internal lubricant for polyimide, also the chemical reactions in the polyimide bulk seem important. The inefficiency of graphite at low temperatures is related to hydrolysis reactions in the polyimide bulk, lowering the effective water content in the sliding interface. Imidisation at higher temperature allows for water supply by condensation reactions. Chemical reactions are demonstrated by Raman spectroscopy. Wear of graphite-filled polyimide manifests either as cleavage along the basal planes or embrittlement.

Novel Material Properties for Medical Applications via Ionizing Radiation
Lecon Woo, Tahua Yang, Sherwin Shang, May 2007

Traditionally, the medical device industry is concerned with degradation aspects of ionizing radiation with sterilization. However, these same radiation sources can also be used to create material properties un-obtainable by other methods. For example, radiation crosslinking produces packaging films from low melting polyolefins to render them steam autoclavable, or undergo minimum distortion at temperatures as high as 125° C. Or, soft, flexible material with extremely high toughness for angioplastic surgery created with high doses of radiation. In assembly operations, components with dissimilar materials can be joined in seconds upon the application of short wavelength ultraviolet radiation. In this presentation, we'll introduce the subject of radiation interaction with polymeric materials, using our own examples and commercial success stories to illustrate the utility of these radiation processes. In the mean time, a critical comparison will be made on the relative merit and disadvantages of each radiation source.

Design of Experiment to Optimize Absorber in Resin Welding Parameters
Michelle M. Burrell, William H. Cawley, Joseph P. Verespy, May 2007

Through Transmission Laser Welding can be accomplished using either a coating or a weldable resin. As part of the weldable resin work, it was necessary to conduct a series of experiments to define optimum welding parameters. In one study, a DOE was conducted to determine the optimum welding parameters for polycarbonate and to develop a prediction equation which could be used in other tests. This DOE studied the effects of absorber concentration, energy density, thickness and pressure. The ability to weld the PC was achieved by blending a Clearweld® infrared absorber with PC resin and molding the parts into a weldable form. This paper summarizes the test procedures and results of the DOE.

The Effect of Mold Temperature on Morphology and Mechanical Properties of Injection Molded Hdpe Structural Foams
Carlos Tovar-Cisneros, Rubén González-Núñez, Denis Rodrigue, May 2007

In this study, HDPE structural foams were produced by injection molding under different mold temperatures to study the effect of this variable on average cell dimension, cell density, and skin thickness ratio. Samples were also produced by setting independently the temperature of the fixed and moving plate of the mould to detect the sensibility of foam structure to a temperature gradient in processing. The resulting foams were also characterized in terms of mechanical properties including impact and flexural tests. It was found that for homogeneous mold temperatures, symmetrical skin thicknesses were obtained, which increased with decreasing mold temperature. On the other hand, by keeping one mold face at a constant temperature and varying the second one, asymmetric skin thicknesses were obtained. The degree of asymmetry was found to increase as the temperature difference between both molds increased. Furthermore, decreasing mold temperature produced a small increase in average cell sizes and reduced cell density. In general, both impact strength and flexural moduli of the structural foams increased with increasing skin thickness. For the particular case of asymmetric foams, the moduli were slightly dependent on the direction of the applied force (surface on which the stress is applied). Higher impact strength was obtained when the falling weight stroke the samples on the face having the smaller skin thickness, whereas for flexural tests, the reverse was observed.

Optimizing Pad Printing Efficiency with Stepper Motor Technology
John Kaverman, May 2007

Technology tends to advance in fits and starts, and pad-printing equipment is no exception. New machinery is developed by manufacturers either as a means to overcome specific technical hurdles or in response to competitive pressures. In this paper we'll look how the old technology of pad-printing has learned new tricks when confronted with both of these issues. And we'll explore how improved equipment designs are opening doors for the pad-printing process in industrial-imaging applications. In particular, we'll consider large-format applications involving consumer appliances, where new pad-printing machines are making the technology viable as an alternative to in-mold decorating, heat transfers and pressure sensitive labels.

An Optimization Approach for Polymer Sheeting Die Design
Mu Yue, Zhao Guoqun, May 2007

An optimization approach for the polymer sheeting die design based on the finite element simulation and genetic algorithm was studied in this paper. The optimization model was established according to the flow balance principle where the outlet flow distribution uniformity was taken as the optimization object and the die structure parameters were the design variables. The results of FEM simulation on the polymer extrusion process were adopted for the calculation of the objective function. The genetic algorithm was used for the fitness evaluation and the search of optimal design variables. The above optimization approach is applied for the optimal design of a fish-tail sheeting die whose result shows that it's feasible and reasonable.

Rheological and Crystallization Behavior of Linear and Branched PBT
B. Jeong, M. Xanthos, K. Hyun, May 2007

Rheological and thermal characteristics of PBT resins were investigated with potential applications in low density foaming. The branched PBT was produced by extrusion modification with a tri-functional modifier, whereas the linear PBT was processed under the same condition without the modifier. The presence of branched molecules resulted in increased elasticity and slower crystallization kinetics due to higher concentration of entanglements and/or increased interchain interactions. Degradation by processing for both resins produced shorter chains, and involved reduced shear viscosity and faster crystallization kinetics, in particular, at high temperature.

Thickness Characterization of Thin Polymer Nanocomposite Oxygen Barrier
Woo-Sik Jang, Ian M. Rawson, Jaime C. Grunlan, May 2007

Thin films of sodium montmorrilonite clay and cationic polyacrylamide have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 30 clay-polymer layers have been deposited, the resulting transparent films exhibit an oxygen transmission rate below the detection limit of commercial instrumentation (< 0.005 cm3/m2/day). This level of oxygen barrier, which is unprecedented for a clayfilled polymer composite, is believed to be due to a nanobrick wall microstructure comprised of completely exfoliated clay in a polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 500 nm. Thickness measurement of these thin films is very challenging, requiring several techniques to confirm accuracy. Ellipsometry, weight measurement, and electron microscopy were used in the present study to obtain accurate thickness. With an optical transparency greater than 90% and potential for microwaveability, this thin film composite is a good candidate for foil replacement in food packaging and may be useful for flexible electronics packaging.

Polyurethanes from Soybean Oil-Based Polyols with Mixed Primary and Secondary Hydroxyls
Zoran S. Petrovi?, Andrew Guo, Ivan Javni, Ivana Cvetkovi?, Doo Pyo Hong, May 2007

Soybean oil was converted by epoxidation and hydroformylation to polyols with varying ratio of secondary and primary hydroxyl groups while keeping hydroxyl content approximately constant at about 200 mg KOH/g. Polyols with secondary groups were solid at room temperature. Their consistence changed gradually to liquids as the content of hydroformylated OH groups increased. Reactivity of polyols with diisocyanates was studied by viscosity increase with time. Glass transition of resulting polyurethanes with the same functionality of polyols varied linearly with the content of primary groups being lower for the higher content of hydroformylated hydroxyls. This was explained by the larger molecular weight of network chains, Mc, of hydroformylated polyols due to extra carbon atoms introduced by the process. The effect of crosslinking density, primary hydroxyl content and polyol reactivity on properties is discussed.

Modeling and Simulation of the Complex Flows in the Extrusion Process of Plastic Profile with Metal Insert
Mu Yue, Zhao Guoqun, May 2007

The extrusion technology of plastic profile with metal insert is recently an advanced plastic processing method. However, its mechanism research work is lagging behind. In this paper, we developed the mathematical model of the extrusion process and simulated the three-dimensional complex flows in the extrusion die by the finite element method based on the CFD theory. The change of the melt rheological properties versus different processing conditions was investigated and some practicable advice on the process operation was accordingly put forward.

Continuous Ultrasonic Process for Preparation of PET/LCP Blends
Kaan Gunes, Avraam I. Isayev, May 2007

Wholly aromatic polyester, LCP, was blended with PET to produce self-reinforced composites using an ultrasonically assisted single screw compounding extruder. Ultrasonic intensity was varied to induce in-situ compatibilization in the blends and was found to decrease pressure, and affect morphological, rheological and mechanical properties. PET and LCP homopolymerization, as well as their copolymerization through possible esterification/ transesterification reactions leading to an increase in their viscosities and mechanical properties was observed in the melt state under certain conditions.

Investigation on Warpage and its Behavior in Sequential Overmolding
Chao-Tsai Huang, Meng-Chih Chen, Wen-Li Yang, Kai-Jie Chang, Shi-Chang Tseng, May 2007

Sequential overmolding is one of the great methods to fabricate the modern injection products. Due to its complicated nature and the unclear physical mechanism, trial-and-error method can not address and manage the warpage and its mechanism effectively. In this study, various parameters including product geometrical effect and material selection have been conducted both theoretically and experimentally. Results showed that the product geometries and molded materials will affect the warpage of final products significantly. It can be the good guidelines to help people understand the mechanism and make the proper design for fabricating the modern multi-component molding products.

Analysis of Rotational Moulding Process Parameters and Warpage on Cycle Times
Anton Ianakiev, K.K.Lim, May 2007

The analysis of heat transfer in the rotational moulding process is a non-linear multi-dimensional problem, which involves a number of process conditions and thermal parameters. This study, mostly involves dimensional analysis, the changing effects of the process parameters and conditions on the process times for different processing circumstances. The modelling helps to further identify and understand the dependence of key thermal parameters due to external heating, external cooling, external-internal cooling and warpage on cycle times of the rotational moulding. This study shows that for the external cooling process, the warpage formation for thicker parts does have a considerable influence on prolonging the total cycle time, also the external-internal cooling method significantly improves the cycle time.

A Constitutive Model for Creep Lifetime of PBO Braided Cord
W.J. Sterling, May 2007

A constitutive model to describe the creep lifetime of PBO braided cord has been developed and fit to laboratory data. The model follows an approach proposed for p-aramid cord in similar applications, and has an Arrhenius-type representation that arises from consideration of the failure phenomenon mechanism. The data were obtained using a hydraulic-type universal testing machine, and were analyzed according to Weibull statistics using commercially-available software. The application of concern to the author is NASA's Ultra- Long Duration Balloon and other gossamer spacecraft, but the motivations for the related p-aramid works suggest broader interest.

The Reinforcement of Poly(Lactic Acid) Using High Aspect Ratio Calcium Carbonate Based Mineral Additive
Zhiyong Xia, Dennis Prendes, Patrick Wernett, Richard C. Bopp, May 2007

As a sustainable alternative to petrochemical-derived products, poly(lactic acid) (PLA) is gaining a lot of interest in recent years. PLA has good optical clarity and high stiffness, but it is also intrinsically brittle. In this paper, the comparison between a specially engineered high aspect ratio mineral-EMforceTM Bio calcium carbonate, mica and talc in reinforcing PLA was performed. It was found that EMforceTM Bio calcium carbonate was extremely effective in improving the low temperature impact toughness as well as increasing the stiffness of PLA. Further the addition of EMforceTM Bio calcium carbonate to PLA does not hinder its compostability at elevated temperatures.

Adhesively Bonded Smart Composite Joints: An Overview
Jinquan Cheng, Guoqiang Li, Su-Seng Pang, May 2007

The peel/shear stress concentration is the principal reason to cause the catastrophic failure of adhesively bonded joints. Many traditional enhancement methods have been developed to mechanically improve the joint strength. Comparing to these traditional mechanical enhancement methods, a smart strength improvement concept for adhesive joint has been introduced to adaptively realize the reduction of peel/shear stress concentration by the integrated piezoelectric layers. Here, the current development of adhesively bonded smart joint systems is reviewed and summarized in detail.

Insert Coating as a Pre-Processing Approach for Improvement of Adhesive Bonding in Plastic-Metal Hybrid Structures
Ahmad Al-Sheyyab, Ines Kuehnert, Ernst Schmachtenberg, May 2007

Improvement of adhesive bonding between plastic and metal components by means of surface coating pretreatment has been investigated. Metal inserts have been coated with polymer-based film then overmolded with reinforced polyamide-6 in an injection molding process. Experimental work has included the characterization of the adhesive bonding strength and the influence of the coating film on the mechanical behavior. FE-Simulation has been conducted to analyze the local shear stresses. Aging influence has been evaluated using climate change test.

ION/Polymer Interactions in Polyelectrolyte Gels
Ferenc Horkay, May 2007

We report results from experimental studies performed on polyelectrolyte gels to understand the volume transition induced by multivalent cations. Macroscopic osmotic and mechanical measurements are made to determine the effect of ion binding on the elastic and mixing contributions of the network free energy. Small-angle neutron scattering is used to reveal the role of multivalent ions in the organization of the polymer segments. We demonstrate that combination of scattering and osmotic measurements allows us to determine the characteristic size of the structural elements that contribute to the osmotically driven concentration fluctuations, and yields important information on the effect of ions on the structure and thermodynamic properties at both molecular and supermolecular levels.







SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use

Links

Locations

SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net