SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Compatibilization of Model Poly(Styrene)/Poly(Dimethysiloxane) Blends
Milan Maric, C.W. Macosko, May 1999

Pre-made block copolymer addition versus in situ reactive blending were compared as compatibilization routes for model poly(styrene) (PS)/poly(dimethylsiloxane) (PDMS) blends. Three different PS-b-PDMS diblock copolymers were added to a PS/PDMS (80/20) blend. An optimal block copolymer weight (16 kg/mol < Mn < 83 kg/mol) apparently allows sufficient copolymer diffusion to the interface to produce a stable morphology. However, the PDMS domain size still remained relatively large (~ 5 µm). A blend of a monofunctional amine-terminated PS (PS-NH 2 ) with a difunctional anhydride terminated PDMS (PDMS-(An)2) (80 wt.% PS phase) produced small, stable PDMS particles (~ 0.3 µm). These results suggest copolymers formed by reactive blending are more effective than pre-made blocks as a method to control PS/PDMS morphologies.

Comparison of Various Models for PS/CO2 Solutions
Minhee Lee, Chul B. Park, Costas Tzoganakis, Hani E. Naguib, May 1999

This paper describes various approaches to the modeling of PS/CO2 solution viscosities. The shear viscosity of PS/CO2 solutions was measured at various levels of CO2 content, temperatures, pressures, and shear rates using a wedge die mounted on a twin-screw extruder with CO2 injection. The PS melt viscosity at low and high shear rates was also measured using a cone and plate rheometer and a capillary rheometer, respectively. In order to mathematically describe the depression of the shear viscosity due to dissolved CO2 in the PS melt, several theoretical models were considered. Cross, Carreau, and generalized Cross-Carreau models were employed to describe the shear-thinning behavior of PS/CO2 solutions at various shear rates. The zero-shear viscosity in these models was derived in terms of the CO2 content, temperature, and pressure based on the free volume change due to these variables. Various models of the zero-shear viscosity, including a generalized Arrhenius equation and a WLF equation, were studied. The modeling procedure and comparison between model predictions are presented in detail.

Ta and TaN Adhesion to High Temperature Fluorinated Polyimides. Surface and Interface Chemistry
K.-W. Lee, E. Simonyi, C. Jahnes, May 1999

The atomic concentrations of fluorinated polyimides (FPIs) by high- resolution XPS match well with the calculated values on the basis of stoichiometry. The surface is not enriched with any detectable amount of CF3 groups. The Ar plasma, which is employed to treat FPI surfaces for an enhanced adhesion, converts the CF3 and imide-carbonyl functional groups to polar ones. Adhesion of Cu/Ta to high temperature FPIs was failed by the thermal cycling reliability test while the TaN adhesion promoting layer greatly improved the adhesion reliability. The locus of failure created by the peel test was found to be within the modified (by in situ Ar plasma) FPI layer and it moved toward the FPI bulk after the T5 reliability test.

Resolving Supplier Formulation and Process Changes
Dale Steiner, Jerry Davis, May 1999

Most disposable medical products are comprised of thermoplastic materials. Manufacturers in the thermoplastic industry periodically institute formulation changes. As mandated by regulatory requirements, the medical device manufacturer must evaluate if a change impacts product safety and efficacy. Minimizing financial impact of validations is critical. A system of communication and engineering was developed to address these challenges. The communication loop enables tracking of milestones during the approval process to ensure timely change implementation. The engineering system provides centralized testing to be utilized within the company. Successful implementation of this system is applicable for organizations of all sizes.

Coextruded Flow in Partially Miscible Systems
Kal R. Sharma, May 1999

Coextrusion technology for solid rocket motors, is proposed to be improved to widen the limits on the range of property variation in functionally graded materials and reduce the associated disparities in processing characteristics. Helical coordinate system is suggested to model the coextruded flow and calculation of interlayer adhesive strength. The design aspects for the material components selected for the coextrusion system is revisited. A finite difference scheme is proposed for the numerical study. The interdiffusion term is proposed to be simulated by considering the concentration independent Diffusion term in Fick's's law of diffusion. A suitable theory for the diffusion in polymer polymer system is needed. Newton-Raphson method is applied for the iterative solution of the algebraic equations. Polymer polymer miscibility and phase behavior is a salient consideration. Marangoni effect can be used to improve interfacial mixing in coextrusion of bifunctional partially miscible and miscible polymer polymer systems. A temperature gradient imposed in addition to the density gradient by arranging the n-layers in certain order of densities leads to a interfacial tension gradient giving rise to the thermocapillary stress and cause flow at the interface. Asymptotic analysis was used at small and large Peclet numbers. This leads to the coupling of momentum and energy equations where convective transport is not negligible. Disturbance flow created by this mechanism has interesting features that are not present in the corresponding problem wherein the motion occurs due to a body force. The implications on the thermocapillary instability by the blend miscibility is discussed.

Continuous Copolymerization of ?-Methylstyrene-Acrylonitrile, ?-Methylstyrene-Acrylonitrile
Kal R. Sharma, May 1999

Two different approaches are proposed to calculate the chain sequence distribution in ?-methyl styreneacrylonitrile copolymer and AMS-AN-S (?-Methylstyrene-acrylonitrile-styrene) terpolymer, ?-methylstyrene-acrylonitrile copolymer and BMS-AN-S (?-methylstyrene-acrylonitrile-styrene) terpolymer. Tube polymerization studies on the terpolymerization of AMS-AN-S using thermal initiation showed that molecular weight can be built at reasonable kinetic rates. One of the approaches is by using the probability model and expressing the results as geometric distribution neglecting effects due to Markov Statistics. The second approach is to use Monte Carlo simulations to calculate the chain sequence distribution.

Constitutive Relationship for Electrorheological Fluids
Kal R. Sharma, May 1999

The Winslow effect in smart-fluids is used in the design of automatic transmission fluid. A configurational distribution function is written and mesoscopic simulations are used to derive the constitutive relation for the stress tensor. The polymer molecule is modeled as an elastic dumbbell connected by a linear spring. Microscopic phenomena and macroscopic behavior are interrelated. Preliminary results reveal that the Bingham or yield stress behavior can be predicted from the first principles. Particle-Particle interactions, Brownian motion induced effect, self-assembly, Marongoni mechanism for particle clustering and their roles in durability, dispersion stability, redispersability and fluidity are explored.

Influence of Mixing Conditions and Composition on the Phase Structure and Properties of Thermoplastic Olefin Blends
Amit Dharia, May 1999

Morphology and mechanical properties of blends of polypropylene/ ethyelene-propylene-diene terpolymer (PP/EPDM) were studied in relation to mixing conditions, and blend composition. The number average diameter (Dm) of dispersed elastomer was found to depend not only on the blend composition but also on the mixing temperature and effective shear rate. The number average diameter increased with the increase in viscosity ratio, ?EPDM/?PP. Mixing temperature was found to be an over riding determinant of flow properties and morphology. All key properties including impact strength, flex modulus, weld line strength, and paint adhesion were influenced both by the composition and morphology. It is demonstrated that good dispersion in blends with mismatched viscosities can be achieved by simultaneous increase in temperature and speed.

An Innovative Approach to Computer Controlled Continuous Injection Molding
Neeli MadhusudanRao, Thanh Tran-Cong, Stephen John Turner, May 1999

Modern polymers are continually finding increased application in many diverse products once dominated by metals. They provide an economically viable alternative to traditionally costly metals in many applications where strength to weight ratio, economics, specific mechanical properties and corrosion resistance are required. Injection molding machines are necessary to produce these geometrically complex components now expected of industry. Because many existing molding machines are cyclic they possess an inherent economic loss due to dwell (idle) time. This paper presents some observations obtained from the design of a prototype continuous cyclic injection molding machine together with some preliminary results from investigations into working of the injection molding machine.

Atmospheric Process for Polar Olefin Copolymers and Terpolymers by Single Site Catalysts
James C.W. Chien, May 1999

Synthetic resins are broadly grouped according to properties such as crystalline vs. amorphous, plastic vs elastic, thermoset vs thermoplastic, insulating vs conductive, polar vs nonpolar, etc. Copolymers of ethylene and polar comonomer possesses very useful properties. They are currently manufactured using free radical initiators at elevated temperature and pressure. These plants are very expensive to construct, so there is urgent need for more economical atmospheric process to replace the aging existing plants. Ziegler catalyst is the most versatile and high performance system to polymerize ethylene and ?-olefins. However, its group IVB organometallic catalytic species are easily poisoned by ? or ? Lewis basic moiety of a polar monomer. Several approaches have been developed to overcome this limitation. They are the use of functional derivative of polar monomer,2-4 generate polar functionality by reaction with vinyl groups,5-8 or develop new catalysts based on late transition metal complexes.9 These methods suffer from either being specific to a single type of polar functionality, or low in productivity. The catalyst cost can be prohibitively high as in the case of Pd catalysts.9 We have developed a general method to polymerize at ambient temperature and pressure any common polar monomer using either group IVB or VIIIB precursor of single-site Ziegler catalyst. The results are presented here.

Processing Variables and the Scaling Parameters in Blown Film Extrusion
Tae H. Kwack, May 1999

Five critical blown film extrusion variables to the formation of morphology of blown film and thus, mechanical/physical properties were identified. For the identified critical processing variables, mathematical expressions of scaling parameters were derived in terms of scaling factors. The scaling factors ?, ?, q, and z are the ratios of die radii, die gaps, output rates, and frost line heights, respectively, of two different blown film extrusion lines. It was found that the scaling parameters should satisfy the following conditions to ensure a proper scaling from one film extrusion line to another.

Surface Modification of Conducting Polymer Films
T.W. Hanks, Madison Powell, Laura L. Wright, May 1999

Thin films of polyaniline, polypyrrole, polythiophene and poly(ethylenedioxythiophene) are electrochemically grown on indium-tin oxide-coated glass plates. The samples are then exposed to dodecanethiol or 1H, 1H, 2H, 2H-perfluorooctanethiol. These nucleophiles react with the surface to give near-monolayers of the thiols. Contact angle analysis and AFM studies reveal that significant changes result from these treatments, altering the surface energies of the materials. A method for quantifying the alteration in the surface properties and for examining the homogeneity of the coverage is detailed. This involves the modification of the AFM tip by attaching a 20 µM sphere and making force-distance measurements of the surface under a layer of distilled water.

Synchrotron Studies of Polymers: An Industrial Perspective
J.D. Londono, R.V. Davidson, R.A. Leach, R. Barton Jr., May 1999

The advantages inherent in synchrotron radiation from an insertion device for studies of oriented polymers are discussed. The relevance of these capabilities for industrially related R&D studies is examined. Increased intensity over lab sources makes possible real-time studies under conditions similar to those encountered during processing. Applications resulting from the highly collimated radiation include mapping spatial variations of structure in films or injection molded plaques. Control over the incident energy provides further advantages. Some illustrative examples are provided.

Foaming of PS/Wood-Fiber Composites in Extrusion Using Moisture as a Blowing Agent
Ghaus Rizvi, Laurent M. Matuana, Chul B. Park, May 1999

This paper presents an experimental study on foam processing of PS and HIPS/wood-fiber composites in extrusion using moisture as a blowing agent. Wood-fiber inherently contains moisture that can potentially be used as a blowing agent. Undried wood-fiber was processed together with PS and HIPS materials in extrusion and wood-fiber composite foams were produced. The cellular morphology and volume expansion ratios of the foamed composites were characterized. Because of the high stiffness of styrenic materials, moisture condensation during cooling after expansion at high temperature did not cause much contraction of the foamed composite and a high volume expansion ratio up to 20 was successfully obtained. The experimental results showed that the expansion ratio could be controlled by varying the processing temperature and the moisture content in the wood-fiber. The effects of a small amount of a chemical blowing agent and mineral oil on the cell morphologies of plastic/wood-fiber composite foams were also investigated.

Employee Non-Compete Contracts: Where Is the Value?
Joseph F. Daversa, May 1999

This paper will discuss the reason for non-compete contracts coming about and the benefits and problems associated with this non-compete for both the employee and the employer. General interviews with employers that have non-compete contracts for the staff verses employers that do not. Also interviews with employees that have non-compete contracts and those that do not. There will be discussions with employers and employees who had problems and/or discussions about their contracts involving lawyers. Many employers feel that if an employee does not have a non-compete contract then there can not be any consequences of hiring this person even if he/she has competitive information. This is incorrect as will be discussed later. The conclusion should be that the individual should decide if he or she should have a non-compete contract with their employer and what information the employee gives to the new employer, should be at the ethical determination of the employee.

Deposition of Conducting Polymers into Porous Semiconductors and Properties of Semiconductor/Polymer Composites
V. Parkhutik, May 1999

The work reviews the state-of-the-art in the deposition of different types of conducting polymers (CP) into porous semiconductor (PS) matrices. Deposition processes range from electrochemical and chemical polymerisation of monomers to vacuum deposition of oligomers. Special emphasis is made on the problem of preserving the semiconductor material properties intact during the polymer deposition. Optical (luminescence, absorption) and electrical (dc conductivity and ac electrical impedance) properties of CP/SP matrices are studied and their comparison with those of non-capped porous semiconductors and bulk conducting polymers is given.

Why It Is Difficult to Mold Parts within Tolerance in Pattern Based Injection Mold Tooling
Thomas J. Mueller, May 1999

Over the last few years, a tremendous amount of work has been done to develop alternatives to conventional machining methods of creating injection mold tooling. Because such alternative methods offer the potential to create injection mold tooling for prototype purposes faster or less expensively than conventional machined tooling, there has been a great deal of interest in alternative tooling. A number of older tooling creating methods have been revived and several new methods have been developed and reported on. Most involve creating a pattern against which the tool is formed, usually by casting a tooling material against the pattern or a copy of the pattern. In general the tooling created by these methods can be referred to as pattern-based tooling. In October, 1997, Dr. Paul Jacobs delivered a paper which defined the relationship between dimensional variation in a cast tool resulting from variations in shrink and the mean shrink level of the tooling material(1). This groundbreaking work provided fundamental information on tolerances in alternative tooling processes. In addition it clearly identified the role shrink in the tooling material plays in determining the ability of any particular tooling process to hold tolerances. Specifically, Jacobs showed that shrink is not uniform; it is in effect a random variable distributed normally around a mean. Furthermore, he showed that the standard deviation of that distribution is proportional to the mean shrink rate. With that information, it is possible to predict the range of dimensional errors in a tool, or tolerance, that result from variations in the shrink rate of the tooling material. As valuable as that work is, its use is limited because it only includes the effects of shrinkage in the tooling material. Other factors such as the accuracy of the pattern building process, any errors introduced in finishing the pattern and variations in shrinkage of the molded part will contribute additional error and make the toler

Opportunities for Solid Freeform Fabrication in Prototyping and Manufacturing
S. Rangarajan, S.C. Danforth, A. Safari, May 1999

Solid Freeform Fabrication (SFF) of parts and components is an area of active development and tremendous potential. SFF is a layered manufacturing technique in which the required component/part is built from a CAD model. This model is mathematically sectioned into a number of layers and a material deposition or tool path is generated for each layer. A fabricator uses this tool path information to build the part, layer by layer. This family of manufacturing techniques offers several advantages over traditional routes, such as: no part specific tooling, fabrication of complex geometries to net shape, and greater design flexibility. There is also a significant potential for lowering cost of prototyping as well as small-scale manufacturing. Many of the SFF routes that are currently available are for fabrication of plastic, ceramic and metal parts. Some of these SFF techniques are, Stereolithography (SLA) Laminated Object Manufacturing (LOM) or Computer-Aided Manufacturing of Laminated Engineering Materials (CAM-LEM), 3D Printing (3DP)/Sander Prototyping (SP)/Droplet Deposition, and Selective Laser Sintering (SLS). Most of the SFF routes are similar in concept, i.e., model generation, followed by mathematical sectioning and layerwise building, and differ only in the method of layer fabrication. In order to manufacture ceramics and metals, the polymer based SFF methods have been adapted using powders as a second phase in a base polymer or fluid. Parts can then be made directly or indirectly. In the direct route, a green ceramic part is directly manufactured to shape. Alternately, in the indirect process, parts are made by infiltrating a ceramic or metal slurry into a polymer or metal mold made by SFF. Subsequent processing of these green parts (i.e., debinding/drying and sintering) is similar to that of traditionally manufactured components and results in a near net shape sintered part.

Time to Market & Rapid Tooling an OEM Prospective
Robert Alvarez, May 1999

Time to market is the item that is critical to survival in the international and domestic markets. Considering that almost all products today have some plastics compounds or are entirely produced in plastics, plastics engineering becomes a critical path technology. In the plastics industry there is one item that drives time to market and that is tooling. How a company approaches rapid tooling will directly affect time to market and can severely affect product release. The machine tool suppliers recognized these issues several years ago. Toolmakers now have machining centers that can reduce chip-cutting time by 40-50%. This shortens tool fabrication time dramatically. We should get our tool in 6-8 weeks instead of 14-16 weeks. However it doesn’t happen that way in real life. Tool fabrication accounts for less that 40% of the tool build time. Design and design modifications have a stronger impact on tooling deliveries. What will make the greatest impact in reducing product development time for OEMs is defining product requirements up front and concurrently deciding on the best approach in rapid tooling. This presentation will review how the injection molder and the OEM can utilize these assets and engineering personnel to achieve the best rapid tooling technology to meet design requirements. Rapid tooling will not satisfy the customer’s needs if it does not work!

The Development of Medium to Long Run Tooling with a View to Rapid Manufacturing
Scott Schermer, May 1999

As emerging technologies develop and existing technologies mature, rapid manufacturing of plastic injection molds has become a reality. Molded plastic parts out of the desired material in days, not weeks was once a dream. With the advances in both mold manufacturing materials and rapid prototyping equipment this is now a reality. Using non-traditional manufacturing methods to produce traditional injection molds, product development cycles can be drastically reduced. With the recent development of materials for rapid prototyping machines, manufacturing molds is now possible using current technology. Using materials for short run tooling, tools can be manufactured in 3 to 7 days that are capable of producing 50 to 250 parts. Long run materials like stainless steel are capable of 100,000 plus shots and can be produced in 5 to 15 days. The technology used to produce these molds is selective laser sintering (SLS). A solid model is produced of the cavity and core and using a laser the mold is produced layer by layer. A heat treat furnace is required to harden the inserts and infiltrate to full density. Very detailed part geometry's are possible. Mold details can be incorporated into the solid model and manufactured into the inserts. Cooling lines both conformal and traditional, ejector pin holes, runner and gates, SPRUE and SPRUE pullers can all be incorporated. The inserts can be polished to a diamond finish, textured using traditional methods, welded, and machined using conventional machining equipment and techniques. These molds are capable of molding both thermoplastic and thermoset materials. Normal pressures and molding cycles are possible. Research and development underway promises to push the envelope of this technology even further. Advances in new materials, techniques and equipment will enhance or obsolete current technology. This technology has the potential to significantly impact the plastics industry.







SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use

Links

Locations

SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net