SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Glass/Epoxy Interphase Response under High Loading Rates
M. Tanoglu, S.H. McKnight, G.R. Palmese, J.W. Gillespie Jr., May 1999

The effects of loading rate on the mechanical properties of the E-glass-fiber/epoxy-amine interphase was investigated. The apparatus, Dynamic Interphase-Loading Apparatus (DILA) was used to load the glass/epoxy interphase under high loading rates. The displacement rates of up to 3935 µm/sec were achieved using the fast expansion capabilities of the piezoelectric actuators. Test results showed that the strength and energy absorbing ability of glass/epoxy interphase is sensitive to the loading rate. The shear stress values were found to reach up to 328 MPa. It was also found that the amount of energy absorbed within the interphase significantly increases at high rate of loading.

Application of a New Theoretical Equation Describing Thermal Conductivity of Composites, Polymer Blends, and Filled Polymers
Shoji Okamoto, Hatsuo Ishida, May 1999

A new theoretical equation that describes the thermal conductivity of two-phase materials has been proposed. This new equation has been applied to carbon short fiber (CSF) filled polyethylene (PE). Although the other equations failed to describe the thermal conductivity of this composite system, the new equation has described it successfully. The dispersion state of the CSF is represented by Pd max, which is a new parameter introduced into the new equation. All experimental data of the thermal conductivity of the CSF filled PE were scattered in the region from Pd max=0.17 to Pd max=0.52. This result suggests that the closest packing state of the CSF in this system is random packing.

Parallel Processes in the Recovery of Biaxially Oriented Amorphous Polymer Films
C.C. Chau, J.C.M. Li, May 1999

Biaxially oriented styrene-acrylonitrile (SAN) copolymer films were annealed at elevated temperatures to allow recovery of their dimensions. The length, width and area of the film decreased rapidly at the beginning and leveled off at long times. The recovery of the linear dimensions were found to follow two second order kinetic processes taking place in parallel. The earlier stage of the recovery seems to be dominated by a second order kinetic process with a higher rate constant. The later stage process has a lower rate constant with a higher activation energy than that of the earlier stage. Mechanisms involved in the parallel recovery processes will be discussed.

Development of a Calorimeter for Measuring the Energy of Adsorption Bonds Formed during Polymer Metallization
Richard J. Murdey, J. Todd Stuckless, May 1999

Calorimetry is an important technique for finding the chemical bond strengths of atoms onto solid surfaces, by measuring the heat of reaction during adsorption. Only recently, though, has technology been developed for studies of metal vapor deposition. We will use calorimetry, in conjunction with spectroscopic experiments, to study the metallization of polymers under clean ultra-high vacuum conditions. This would be the first direct quantitative measurement of the chemical contribution to interfacial metal-polymer adhesion. Early tests promise a precision within 1% for the adsorption energy, at a coverage resolution within a few percent of the repeat unit density of a typical polymer surface.

Investigation of Cavity-To-Cavity Variations in Multi-Cavity Tools
V. Natarajan, C.H. Chien, F.S. Lai, May 1999

Cavity pressure is widely accepted as a sensitive indicator of the injection molding process and can be used as one of the process parameters that control the overall molding cycle. This paper presents the investigation of the role of cavity pressure in predicting part quality, effect of process parameters on part weight and cavity pressure, and the dependence of nozzle melt temperature on process parameters. In addition, the effect and the presence of different runner systems in a multi-cavity tool and its subsequent effect on the part quality and performance are also investigated.

Polymer-Polymer Adhesion in Melt-Processed Layered Structures
Phillip J. Cole, Christopher W. Macosko, May 1999

Improving the adhesion of polyolefins to glassy polymers is complicated by the semicrystalline nature of the polyolefins. Traditional methods used in glassy polymers to increase the interlayer adhesion, including the addition of a diblock copolymer or the formation of a copolymer through in situ reaction are still successful with semicrystalline polymers. However, melt miscibility of the adhesion promoting molecules is no longer sufficient; they must also co-crystallize. Even when co-crystallization is achieved, the reactive method is shown to provide greater fracture toughness than the addition of a pre-made diblock copolymer. In the latter case, the formation of micelles limits the efficiency of the diblock copolymer. Finally, significant adhesion enhancement is attainable in reactive systems with contact times as short as 45 seconds as demonstrated through a multilayer coextrusion of amorphous nylon against a polypropylene-maleated polypropylene blend.

Compatibilization of Model Poly(Styrene)/Poly(Dimethysiloxane) Blends
Milan Maric, C.W. Macosko, May 1999

Pre-made block copolymer addition versus in situ reactive blending were compared as compatibilization routes for model poly(styrene) (PS)/poly(dimethylsiloxane) (PDMS) blends. Three different PS-b-PDMS diblock copolymers were added to a PS/PDMS (80/20) blend. An optimal block copolymer weight (16 kg/mol < Mn < 83 kg/mol) apparently allows sufficient copolymer diffusion to the interface to produce a stable morphology. However, the PDMS domain size still remained relatively large (~ 5 µm). A blend of a monofunctional amine-terminated PS (PS-NH 2 ) with a difunctional anhydride terminated PDMS (PDMS-(An)2) (80 wt.% PS phase) produced small, stable PDMS particles (~ 0.3 µm). These results suggest copolymers formed by reactive blending are more effective than pre-made blocks as a method to control PS/PDMS morphologies.

Comparison of Various Models for PS/CO2 Solutions
Minhee Lee, Chul B. Park, Costas Tzoganakis, Hani E. Naguib, May 1999

This paper describes various approaches to the modeling of PS/CO2 solution viscosities. The shear viscosity of PS/CO2 solutions was measured at various levels of CO2 content, temperatures, pressures, and shear rates using a wedge die mounted on a twin-screw extruder with CO2 injection. The PS melt viscosity at low and high shear rates was also measured using a cone and plate rheometer and a capillary rheometer, respectively. In order to mathematically describe the depression of the shear viscosity due to dissolved CO2 in the PS melt, several theoretical models were considered. Cross, Carreau, and generalized Cross-Carreau models were employed to describe the shear-thinning behavior of PS/CO2 solutions at various shear rates. The zero-shear viscosity in these models was derived in terms of the CO2 content, temperature, and pressure based on the free volume change due to these variables. Various models of the zero-shear viscosity, including a generalized Arrhenius equation and a WLF equation, were studied. The modeling procedure and comparison between model predictions are presented in detail.

Ta and TaN Adhesion to High Temperature Fluorinated Polyimides. Surface and Interface Chemistry
K.-W. Lee, E. Simonyi, C. Jahnes, May 1999

The atomic concentrations of fluorinated polyimides (FPIs) by high- resolution XPS match well with the calculated values on the basis of stoichiometry. The surface is not enriched with any detectable amount of CF3 groups. The Ar plasma, which is employed to treat FPI surfaces for an enhanced adhesion, converts the CF3 and imide-carbonyl functional groups to polar ones. Adhesion of Cu/Ta to high temperature FPIs was failed by the thermal cycling reliability test while the TaN adhesion promoting layer greatly improved the adhesion reliability. The locus of failure created by the peel test was found to be within the modified (by in situ Ar plasma) FPI layer and it moved toward the FPI bulk after the T5 reliability test.

Resolving Supplier Formulation and Process Changes
Dale Steiner, Jerry Davis, May 1999

Most disposable medical products are comprised of thermoplastic materials. Manufacturers in the thermoplastic industry periodically institute formulation changes. As mandated by regulatory requirements, the medical device manufacturer must evaluate if a change impacts product safety and efficacy. Minimizing financial impact of validations is critical. A system of communication and engineering was developed to address these challenges. The communication loop enables tracking of milestones during the approval process to ensure timely change implementation. The engineering system provides centralized testing to be utilized within the company. Successful implementation of this system is applicable for organizations of all sizes.

Coextruded Flow in Partially Miscible Systems
Kal R. Sharma, May 1999

Coextrusion technology for solid rocket motors, is proposed to be improved to widen the limits on the range of property variation in functionally graded materials and reduce the associated disparities in processing characteristics. Helical coordinate system is suggested to model the coextruded flow and calculation of interlayer adhesive strength. The design aspects for the material components selected for the coextrusion system is revisited. A finite difference scheme is proposed for the numerical study. The interdiffusion term is proposed to be simulated by considering the concentration independent Diffusion term in Fick's's law of diffusion. A suitable theory for the diffusion in polymer polymer system is needed. Newton-Raphson method is applied for the iterative solution of the algebraic equations. Polymer polymer miscibility and phase behavior is a salient consideration. Marangoni effect can be used to improve interfacial mixing in coextrusion of bifunctional partially miscible and miscible polymer polymer systems. A temperature gradient imposed in addition to the density gradient by arranging the n-layers in certain order of densities leads to a interfacial tension gradient giving rise to the thermocapillary stress and cause flow at the interface. Asymptotic analysis was used at small and large Peclet numbers. This leads to the coupling of momentum and energy equations where convective transport is not negligible. Disturbance flow created by this mechanism has interesting features that are not present in the corresponding problem wherein the motion occurs due to a body force. The implications on the thermocapillary instability by the blend miscibility is discussed.

Continuous Copolymerization of ?-Methylstyrene-Acrylonitrile, ?-Methylstyrene-Acrylonitrile
Kal R. Sharma, May 1999

Two different approaches are proposed to calculate the chain sequence distribution in ?-methyl styreneacrylonitrile copolymer and AMS-AN-S (?-Methylstyrene-acrylonitrile-styrene) terpolymer, ?-methylstyrene-acrylonitrile copolymer and BMS-AN-S (?-methylstyrene-acrylonitrile-styrene) terpolymer. Tube polymerization studies on the terpolymerization of AMS-AN-S using thermal initiation showed that molecular weight can be built at reasonable kinetic rates. One of the approaches is by using the probability model and expressing the results as geometric distribution neglecting effects due to Markov Statistics. The second approach is to use Monte Carlo simulations to calculate the chain sequence distribution.

Constitutive Relationship for Electrorheological Fluids
Kal R. Sharma, May 1999

The Winslow effect in smart-fluids is used in the design of automatic transmission fluid. A configurational distribution function is written and mesoscopic simulations are used to derive the constitutive relation for the stress tensor. The polymer molecule is modeled as an elastic dumbbell connected by a linear spring. Microscopic phenomena and macroscopic behavior are interrelated. Preliminary results reveal that the Bingham or yield stress behavior can be predicted from the first principles. Particle-Particle interactions, Brownian motion induced effect, self-assembly, Marongoni mechanism for particle clustering and their roles in durability, dispersion stability, redispersability and fluidity are explored.

Influence of Mixing Conditions and Composition on the Phase Structure and Properties of Thermoplastic Olefin Blends
Amit Dharia, May 1999

Morphology and mechanical properties of blends of polypropylene/ ethyelene-propylene-diene terpolymer (PP/EPDM) were studied in relation to mixing conditions, and blend composition. The number average diameter (Dm) of dispersed elastomer was found to depend not only on the blend composition but also on the mixing temperature and effective shear rate. The number average diameter increased with the increase in viscosity ratio, ?EPDM/?PP. Mixing temperature was found to be an over riding determinant of flow properties and morphology. All key properties including impact strength, flex modulus, weld line strength, and paint adhesion were influenced both by the composition and morphology. It is demonstrated that good dispersion in blends with mismatched viscosities can be achieved by simultaneous increase in temperature and speed.

An Innovative Approach to Computer Controlled Continuous Injection Molding
Neeli MadhusudanRao, Thanh Tran-Cong, Stephen John Turner, May 1999

Modern polymers are continually finding increased application in many diverse products once dominated by metals. They provide an economically viable alternative to traditionally costly metals in many applications where strength to weight ratio, economics, specific mechanical properties and corrosion resistance are required. Injection molding machines are necessary to produce these geometrically complex components now expected of industry. Because many existing molding machines are cyclic they possess an inherent economic loss due to dwell (idle) time. This paper presents some observations obtained from the design of a prototype continuous cyclic injection molding machine together with some preliminary results from investigations into working of the injection molding machine.

Atmospheric Process for Polar Olefin Copolymers and Terpolymers by Single Site Catalysts
James C.W. Chien, May 1999

Synthetic resins are broadly grouped according to properties such as crystalline vs. amorphous, plastic vs elastic, thermoset vs thermoplastic, insulating vs conductive, polar vs nonpolar, etc. Copolymers of ethylene and polar comonomer possesses very useful properties. They are currently manufactured using free radical initiators at elevated temperature and pressure. These plants are very expensive to construct, so there is urgent need for more economical atmospheric process to replace the aging existing plants. Ziegler catalyst is the most versatile and high performance system to polymerize ethylene and ?-olefins. However, its group IVB organometallic catalytic species are easily poisoned by ? or ? Lewis basic moiety of a polar monomer. Several approaches have been developed to overcome this limitation. They are the use of functional derivative of polar monomer,2-4 generate polar functionality by reaction with vinyl groups,5-8 or develop new catalysts based on late transition metal complexes.9 These methods suffer from either being specific to a single type of polar functionality, or low in productivity. The catalyst cost can be prohibitively high as in the case of Pd catalysts.9 We have developed a general method to polymerize at ambient temperature and pressure any common polar monomer using either group IVB or VIIIB precursor of single-site Ziegler catalyst. The results are presented here.

Processing Variables and the Scaling Parameters in Blown Film Extrusion
Tae H. Kwack, May 1999

Five critical blown film extrusion variables to the formation of morphology of blown film and thus, mechanical/physical properties were identified. For the identified critical processing variables, mathematical expressions of scaling parameters were derived in terms of scaling factors. The scaling factors ?, ?, q, and z are the ratios of die radii, die gaps, output rates, and frost line heights, respectively, of two different blown film extrusion lines. It was found that the scaling parameters should satisfy the following conditions to ensure a proper scaling from one film extrusion line to another.

Surface Modification of Conducting Polymer Films
T.W. Hanks, Madison Powell, Laura L. Wright, May 1999

Thin films of polyaniline, polypyrrole, polythiophene and poly(ethylenedioxythiophene) are electrochemically grown on indium-tin oxide-coated glass plates. The samples are then exposed to dodecanethiol or 1H, 1H, 2H, 2H-perfluorooctanethiol. These nucleophiles react with the surface to give near-monolayers of the thiols. Contact angle analysis and AFM studies reveal that significant changes result from these treatments, altering the surface energies of the materials. A method for quantifying the alteration in the surface properties and for examining the homogeneity of the coverage is detailed. This involves the modification of the AFM tip by attaching a 20 µM sphere and making force-distance measurements of the surface under a layer of distilled water.

Synchrotron Studies of Polymers: An Industrial Perspective
J.D. Londono, R.V. Davidson, R.A. Leach, R. Barton Jr., May 1999

The advantages inherent in synchrotron radiation from an insertion device for studies of oriented polymers are discussed. The relevance of these capabilities for industrially related R&D studies is examined. Increased intensity over lab sources makes possible real-time studies under conditions similar to those encountered during processing. Applications resulting from the highly collimated radiation include mapping spatial variations of structure in films or injection molded plaques. Control over the incident energy provides further advantages. Some illustrative examples are provided.

Foaming of PS/Wood-Fiber Composites in Extrusion Using Moisture as a Blowing Agent
Ghaus Rizvi, Laurent M. Matuana, Chul B. Park, May 1999

This paper presents an experimental study on foam processing of PS and HIPS/wood-fiber composites in extrusion using moisture as a blowing agent. Wood-fiber inherently contains moisture that can potentially be used as a blowing agent. Undried wood-fiber was processed together with PS and HIPS materials in extrusion and wood-fiber composite foams were produced. The cellular morphology and volume expansion ratios of the foamed composites were characterized. Because of the high stiffness of styrenic materials, moisture condensation during cooling after expansion at high temperature did not cause much contraction of the foamed composite and a high volume expansion ratio up to 20 was successfully obtained. The experimental results showed that the expansion ratio could be controlled by varying the processing temperature and the moisture content in the wood-fiber. The effects of a small amount of a chemical blowing agent and mineral oil on the cell morphologies of plastic/wood-fiber composite foams were also investigated.







SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use

Links

Locations

SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net