- CONNECTIONS
- CONVERSATIONS
- CONTENT
- PROMOTE YOUR BUSINESS
- BECOME A LEADER
The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
3D printing holds great promise for manufacturing. And yet, deployment and adoption has lagged. One reason for this appears to be that building the business case for 3D printing is a major roadblock for many companies. Join us to find out why building your business case is critical to successfully using 3D printing in plastic injection, and to learn how to build robust justifications for investing in 3D printing by:
Thermosets and composites can be difficult materials to use in serial production. How do you know what combinations of curing temperatures and time can be used? When is it safe to demold parts? And are the final properties what you expect? Without this information, it is impossible to optimize your cycle times and minimize waste. This webinar will introduce how thermal analysis is being utilized by DarkAero to manufacture high-performance two-seat aircraft and composite structures with a new level of technical understanding and engineering confidence. The material covered will include:
To address growing supply chain pressures, manufacturers are turning to Additive Manufacturing (AM) to create quality, cost-efficient products faster. Plastic thermoforming companies like Duo Form have discovered how to leverage large-format extrusion 3D printing using low-cost plastic pellets to gain a competitive edge. They are producing medium-to-large-sized thermoforming molds in less than half the time, and at a fraction of the cost compared to traditional mold-making methods.
Join engineering and business experts from 3D Systems and Duo Form as we dive deep into the integration that has made pellet-extrusion AM so beneficial for Duo Form, and how you can reap the same benefits in your own thermoforming processes.
In this webinar, you will learn about:
Thermoplastic resins are utilized in many applications because of their unique property set, including their ductile response to applied stress. This ductility is associated with the viscoelastic nature of polymers and is attributed to their unique molecular structure. In spite of that inherent ductility, most plastic components fail through one of the many brittle fracture modes. Experience through conducting thousands of plastic component failure analyses has shown that less than 5% were associated with ductile overload. The remainder represent brittle fractures of normally ductile materials. Thus, within evaluations of plastic component failures, the focus of the investigation frequently turns to identifying the nature of the ductile to brittle transition. This relatively brittle response to stress is evident through the examination and characterization of the fracture surface morphology. There are numerous factors, associated with material, processing, design, and service conditions that influence a ductile-to-brittle transition within plastic materials. These include:
Plastics are viscoelastic materials, meaning that they exhibit both viscous and elastic characteristics when undergoing deformation. This is due to their unique molecular structure. The polymer molecules consist of long chains with high molecular weight. Those individual polymer chains are and tangled into each other, but are mobile and can slide past each other because they do not share chemical bonds with the other chains. Because of their viscoelastic nature, the mechanical properties of plastics vary depending on the conditions under which stress is applied. Most commonly, the mechanical properties of plastics will vary with temperature, time under load, and strain rate. Their viscoelastic nature is important to those designing, manufacturing, or using plastic components. and is a fundamental concept of plastic behavior that needs to be understood. It is important to recognize the viscoelastic nature of plastic materials so that their behavior in the intended application can be understood. This webinar will expose the attendees to the following concepts:
Polymers, in their various forms, are a vital part of our material infrastructure and continue to grow in importance and utilization. Due to their unique and diverse mechanical properties, they offer solutions to technical challenges in many applications. Whether their role is as a bulk material, composite, or coating, quantifying the resulting properties and responses to stress is vital to development and production. As these applications grown in complexity and shrink in size, quantification by traditional means becomes increasingly difficult. It is also increasingly vital, as tolerances tighten and conditions become more extreme. This presentation will review the mechanical properties that are quantifiable by modern instrumented indentation and scratch testing systems. It also includes practical examples exploring those properties and their relevance to a range of applications.
Continuous fiber reinforced thermoplastic (CFR TP) components have anisotropic (direction dependent) properties which can be designed to withstand specific load cases. Combined with the fact that their specific strength is higher than that of metals, while the ability to machine them is comparable, there is an opportunity for producing lighter, simpler, plastic components with tailored properties. This webinar will introduce the Laser-Assisted Tape Deposition (LATD) technology of AFPT GmbH and the production capacities of its subsidiary, Alformet GmbH. Then the applications of CFR TP components will be explored, while focusing on how inserts for injection molding, and the overmolding of tubular structures can allow for new part designs otherwise considered unachieveable.
Dynamic Mechanical Analysis (DMA) is a thermoanalytical technique that measures the stiffness (modulus) and damping (tan delta) of polymeric materials to assess the viscoelastic properties as a function of time, temperature, and frequency. Polymeric materials display both elastic and viscous behavior simultaneously, and DMA can separate these responses. Polymers, composed of long molecular chains, have unique viscoelastic properties, which combine the characteristics of elastic solids and Newtonian fluids. As part of the DMA evaluation, a small deformation is applied to a sample in a cyclic manner. This allows the material’s response to stress, temperature, and frequency to be studied. The analysis can be in several modes, including tension, shear, compression, torsion, and flexure. DMA is a very powerful tool for the analysis of plastics and can provide information regarding: This webinar will provide an introductory look into DMA and how it can be applied to better understand plastic behavior, both long-term and short-term.
The age-old supply chain challenge - do order production tooling without completing design validation in end-use material in order to save weeks to months of lead times? With quick-turn injection molded parts from 3D printed tools, you don’t have to sacrifice the prototype phase to meet product deadlines. At a fraction of the cost and time of traditional steel and aluminum tools, designers can leverage this technology to iterate new designs many times over - and FAST. Materials ranging from commodity to high-performance resins can run on these tools with complex geometries. This webinar will highlight the benefits of this technology, use cases, and customer case studies where this solution helped bridge the gap between design and production tooling.
Material selection is one of the fundamental aspects that will determine the success or failure of a product. With so many choices available today regarding plastic materials, it is imperative that anyone involved in product design or material selection understand resin properties and how they will affect end product performance as well as part design and manufacturability. While plastic material selection is a frequent topic of discussion, it is not as simple as it may first appear. A thorough understanding of the short-term and long-term properties of the potential plastic resins is essential. To help make the best plastic resin choice, is also essential to have a basic knowledge of polymer chemistry. This webinar will address some of the considerations that need to be made when selecting a plastic resin, and outline the challenges and benefits of selecting an appropriate material. The presentation will introduce a method of systematic selection that will optimize the plastics material selection process.
Recognized over the years for its exceptional prototyping quality and part accuracy, SLA-based additive manufacturing is changing in a big way, with an automation-ready solution that offers up to twice the print speed and up to three times the throughput of existing SLA systems. Join us as we reveal the revolutionary innovations that we are introducing with our new SLA 750 full workflow solution. Providing breakthrough gains in speed, throughput, material performance, and cost-efficiency for factory-floor production, this complete solution features production-grade materials, automation compatibility, and AI-based seamless integration with all factory floor equipment. These innovations now more effectively answer your requirements, from prototyping to production, whether you are a service bureau, automotive, aerospace, consumer goods, foundry or medical device manufacturer.
If you work with plastic components that include outdoor exposure, then "Ultraviolet (UV) Effects on Plastic Material" will provide you with information that will enhance your understanding of the interaction between UV radiation-based weathering and plastic resins, and help prevent premature failure. Topics covered during this session include an introduction to UV degradation and an explanation of the failure mechanism characteristic of UV radiation/plastic interaction. Case studies associated with UV radiation exposure will be presented. You will learn…
Nylon (polyamide) (PA) resins are very versatile, and accordingly are used in many different applications. As a family, they have a diverse property range. However, in order to effectively design, produce, and utilize products made from polyamides, it is essential to thoroughly understand the nature of this material, including the mechanical, thermal, and chemical properties. Polyamide (nylon) is a generic designation for a family of synthetic thermoplastics, based on aliphatic or semi-aromatic polymers with amide functionality. Polyamides can be mixed with a wide variety of additives, fillers, and reinforcers to achieve many different properties. Many different types of polyamide resins are available commercially based upon the monomers used in the polymerization process. While the structure of polyamide is relatively straightforward, and it is often viewed as a basic resin, polyamides are used in many highly engineered and demanding applications. In order to do this, however, there must be a thorough understanding of the material. This webinar will illustrate the advantages and disadvantages over other materials and differentiate between the various types of polyamides. By understanding the critical performance characteristics of polyamides, it is possible to make smart decisions on when polyamides are suitable for an application, and which type would be most appropriate. Recognizing the strengths and weaknesses of this important class of material will help to avoid failures.
The characteristic properties exhibited by plastics are the direct result of their unique molecular structure. Plastics are polymers of very high molecular mass. To enhance their properties, they often contain additives, however, the underlying attributes of a plastic material are determined by the polymer. The molecular weight of the base polymer is a fundamental factor in the characteristics of plastic materials. This includes the mechanical, thermal, chemical, and environmental properties of the material, and ultimately the formed part. Through the polymerization process, polymers - materials of relatively high molecular weight, macromolecules - are produced. Higher molecular weights are associated with longer molecular chains, and this results in a greater level of entanglement. This has important implications, as higher-molecular-weight grades of plastics will have superior mechanical, thermal and chemical resistance properties compared with lower molecular-weight grades of the same material. Through this webinar, the viewers will:
O-rings function as a means of sealing, essentially closing off a passageway to prevent the escape or loss of a fluid, either a liquid or a gas. An O-ring has a toric shape, and is typically manufactured from an elastomeric material. The seal is established by placing the O-ring into a cavity, known as a gland. The gland acts to compress the O-ring, and produces a zero-clearance condition, which effectively blocks the flow of the fluid. The sealing effect is produced through axial or radial compression of the O-ring. In general, O-ring seals are considered to be particularly reliable due to the simplicity of the O-ring/gland design and overall material resilience. However, under a number of circumstances failure can occur. O-ring failure can range from minor leakage to catastrophic equipment breakdown. Regardless of the magnitude, an O-ring failure can be diagnosed through proper visual and analytical techniques. This webinar will review:
Find out more about the professional development service, "Teach the Geek." The service is designed to help technical professionals develop and polish their presentation skills.
This 4-part workshop is intended as an introductory primer in patent law and practice for scientists, engineers and managers involved in business and technology. The workshop provides an overview of patent protection and trade secret protection. The workshop also covers the fundamentals of how to identify, and document an invention, search for patents related to the invention, and apply for a patent application. In particular, attendees will become familiar with the types of patent applications, patentability requirements, the parts of a patent application, and the prosecution process for getting a patent application allowed before the U.S. Patent and Trademark Office (USPTO). Attendees will also become familiar with foreign filing of patent applications, post grant patent options including mechanisms for challenging a U.S. patent before the USPTO, the various types of patent opinions and patent litigation. No prior knowledge of patent law is required.
This 4-part workshop is intended as an introductory primer in patent law and practice for scientists, engineers and managers involved in business and technology. The workshop provides an overview of patent protection and trade secret protection. The workshop also covers the fundamentals of how to identify, and document an invention, search for patents related to the invention, and apply for a patent application. In particular, attendees will become familiar with the types of patent applications, patentability requirements, the parts of a patent application, and the prosecution process for getting a patent application allowed before the U.S. Patent and Trademark Office (USPTO). Attendees will also become familiar with foreign filing of patent applications, post grant patent options including mechanisms for challenging a U.S. patent before the USPTO, the various types of patent opinions and patent litigation. No prior knowledge of patent law is required.
This 4-part workshop is intended as an introductory primer in patent law and practice for scientists, engineers and managers involved in business and technology. The workshop provides an overview of patent protection and trade secret protection. The workshop also covers the fundamentals of how to identify, and document an invention, search for patents related to the invention, and apply for a patent application. In particular, attendees will become familiar with the types of patent applications, patentability requirements, the parts of a patent application, and the prosecution process for getting a patent application allowed before the U.S. Patent and Trademark Office (USPTO). Attendees will also become familiar with foreign filing of patent applications, post grant patent options including mechanisms for challenging a U.S. patent before the USPTO, the various types of patent opinions and patent litigation. No prior knowledge of patent law is required.
This 4-part workshop is intended as an introductory primer in patent law and practice for scientists, engineers and managers involved in business and technology. The workshop provides an overview of patent protection and trade secret protection. The workshop also covers the fundamentals of how to identify, and document an invention, search for patents related to the invention, and apply for a patent application. In particular, attendees will become familiar with the types of patent applications, patentability requirements, the parts of a patent application, and the prosecution process for getting a patent application allowed before the U.S. Patent and Trademark Office (USPTO). Attendees will also become familiar with foreign filing of patent applications, post grant patent options including mechanisms for challenging a U.S. patent before the USPTO, the various types of patent opinions and patent litigation. No prior knowledge of patent law is required.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.
If you need help with citations, visit www.citationmachine.net