ANTEC® Recap: Fiber Behavior Is a Focus of Composites Session
Posted: 05/14/2021
Researchers gauge impact of fibers in multiple applications
By Peggy Malnati
The May 12 composites session featured several talks characterizing fiber-breakage mechanisms and developing predictive models for discontinuous/short-fiber injection molding materials. It’s well established both that retained fiber length has a major impact on mechanical properties of composites and that, by its nature, injection molding provides many opportunities to break fibers.
Previous work had established that there are three fiber-damage mechanisms—fiber/fiber, fiber/machine surface and fiber/polymer interactions. Most damage occurs in the plasticization unit, and that damage is influenced by process settings like screw speed, melt temperature and backpressure.
Franziska Bürenhaus of the University of Paderborn, Germany, carried this work forward by examining the influence of process parameters on fiber length reduction in 20, 30 and 40 fiber-weight fraction (FWF) short-glass reinforced polypropylene (GR-PP) and 30 percent FWF polyamide 6 (GR-PA 6).
Working with a special press equipped with a removeable plate that allowed researchers to take samples along a 700-mm length of the screw, she documented the progression of fiber breakage in different transition zones. (Once samples were removed, the matrix was burned off, then fibers were washed, scanned and measured.) For GR-PA 6, samples were also taken at the injection nozzle tip.
The author documented interesting interactions between process parameters and FWF, including differences between the two polymer systems. Details are spelled out in her paper “Influence of Processing Parameters on Fiber Length Degradation During Injection Molding.” Bürenhaus said that future work will examine whether short-glass results translate to long-fiber thermoplastic (LFT) materials and that there are plans to develop a fiber-breakage model, including damage mechanisms seen in the mixing area of the melt pool and solid bed.
Another view of this issue was provided by Chao-Tsai Huang of Tamkang University, Taipei, Taiwan, in his talk titled “Study on the Flow-Fiber Coupling and Its Influence on the Shrinkage of FRP (fiber-reinforced plastics) Injection Parts.” A team made up of three Taiwanese universities and a machinery OEM conducted research into fiber microstructures like fiber length, orientation, and concentration and flow-fiber coupling effects using numerical simulation and physical testing on molded samples of GR-PP using three gating scenarios and with measurements made near, intermediate and far from gates. The fiber orientation behavior was verified by micro-computerized tomography scans and image analysis. Good correlation was achieved with the predictive model developed
Other interesting work presented in this session included Raveen John, University of Auckland, New Zealand, who discussed work characterizing the mechanical performance and machinability of natural-fiber PP composites reinforced with kenaf, jute or rice hulls; Jinchuan Zhao of the University of Toronto, who improved the mechanical, rheological, crystallization behavior and cell structure of structural foamed PP reinforced with nano-scale fibrils of polytetrafluoroethylene (PTFE); and Nabeel Ahmed Syed of Ontario Tech University, Oshawa, Ontario, Canada, who evaluated replacing steel cord-reinforced composites with carbon fiber-reinforced composites in a handrail to increase safety. The presentation that garnered the most questions was work by Solmaz Karamikamkar of the University of Toronto, who discussed multifunctional aerogels made with polymerized silica precursors that possessed either stiff or flexible backbones. Aerogels are used in many industries and future work with this system will include its use as the core of sandwich composites.
More composites research will be presented in a joint Composites/Building & Infrastructure session May 20.
Kim McLoughlin Senior Research Engineer, Global Materials Science Braskem
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Kim drives technology programs at Braskem to develop advanced polyolefins with improved recyclability and sustainability. As Principal Investigator on a REMADE-funded collaboration, Kim leads a diverse industry-academic team that is developing a process to recycle elastomers as secondary feedstock. Kim has a PhD in Chemical Engineering from Cornell. She is an inventor on more than 25 patents and applications for novel polyolefin technologies. Kim is on the Board of Directors of SPE’s Thermoplastic Materials & Foams Division, where she has served as Education Chair and Councilor.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Gamini has a BS and PhD from Purdue University in Materials Engineering and Sustainability. He joined Penn State as a Post Doctorate Scholar in 2020 prior to his professorship appointment. He works closely with PA plastics manufacturers to implement sustainability programs in their plants.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Tom Giovannetti holds a Degree in Mechanical Engineering from The University of Tulsa and for the last 26 years has worked for Chevron Phillips Chemical Company. Tom started his plastics career by designing various injection molded products for the chemical industry including explosion proof plugs and receptacles, panel boards and detonation arrestors for 24 inch pipelines. Tom also holds a patent for design of a polyphenylene sulfide sleeve in a nylon coolant cross-over of an air intake manifold and is a Certified Plastic Technologist through the Society of Plastic Engineers. Tom serves on the Oklahoma Section Board as Councilor, is also the past president of the local Oklahoma SPE Section, and as well serves on the SPE Injection Molding Division board.
Joseph Lawrence, Ph.D. Senior Director and Research Professor University of Toledo
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Dr. Joseph Lawrence is a Research Professor and Senior Director of the Polymer Institute and the Center for Materials and Sensor Characterization at the University of Toledo. He is a Chemical Engineer by training and after working in the process industry, he has been engaged in polymers and composites research for 18+ years. In the Polymer Institute he leads research on renewably sourced polymers, plastics recycling, and additive manufacturing. He is also the lead investigator of the Polyesters and Barrier Materials Research Consortium funded by industry. Dr. Lawrence has advised 20 graduate students, mentored 8 staff scientists and several undergraduate students. He is a peer reviewer in several journals, has authored 30+ peer-reviewed publications and serves on the board of the Injection Molding Division of SPE.
Matt Hammernik Northeast Account Manager Hasco America
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Matt Hammernik serves as Hasco America’s Northeast Area Account Manager covering the states Michigan, Ohio, Indiana, and Kentucky. He started with Hasco America at the beginning of March 2022. Matt started in the Injection Mold Industry roughly 10 years ago as an estimator quoting injection mold base steel, components and machining. He advanced into outside sales and has been serving molders, mold builders and mold makers for about 7 years.
84 countries and 85.6k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.