Diversity, Equity, and Inclusion in Manufacturing — Jan. 2022 Virtual Conference Recordings
SPE DEI Events 2021-2022

Steven Mendoza-Cedeno

< Back to Insight Program

Steven Medozan-Cedeno, University of Toronto

Steven Mendoza-Cedeno
Student
University of Toronto

High Temperature Foam Injection Molding Using Linear And Branched Polypropylene

Abstract: Long-chain branched polypropylene (LCB PP) has been used extensively to improve cell morphologies in foaming applications. However, most research focuses on low melt flow rate (MFR) resins, whereas foam production methods such as mold-opening foam injection molding (MO-FIM) require high-MFR resins to improve processability. A systematic study was conducted comparing a conventional linear PP, a broad molecular weight distribution (BMWD) linear PP, and a newly developed BMWD LCB PP for use in MO-FIM. The effects of foaming temperature and molecular architecture on cell morphology, surface roughness, and mechanical properties were studied by utilizing two chemical blowing agents (CBAs) with different activation temperatures and varying packing times. At the highest foaming temperatures, BMWD LCB PP foams exhibited 887% higher cell density, 46% smaller cell sizes, and more uniform cell structures than BWMD linear PP. Linear PP was found to have a surface roughness 23% higher on average than other resins. The BMWD LCB PP was found to have increased flexural modulus (44%) at the cost of decreased toughness (−88%) compared to linear PP. The branched architecture and high molecular weight of the BMWD LCB PP contributed to improved foam morphologies and surface quality in high-temperature MO-FIM conditions.

Biography: Steven Mendoza-Cedeno is a M.A.Sc. student at the University of Toronto working under the supervision of Prof. Patrick C. Lee in the Multifunctional Composites Manufacturing Laboratory. He received his B.A.Sc. in Mechanical Engineering at the University of Toronto in 2020 and is currently researching foam injection molding processes for novel high-melt-strength polypropylene resins.




spe2018logov4.png
  Welcome Page

Questions about the program?

Contact Kim Wakuluk at +1 203.740.5439