SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Webinars
Meet "Teach the Geek"
Neil Thompson, March 2022
Find out more about the professional development service, "Teach the Geek." The service is designed to help technical professionals develop and polish their presentation skills.
Patent Law Fundamentals for Scientists, Engineers, and Managers - Part 4
Robert A. Migliorini, February 2022
This 4-part workshop is intended as an introductory primer in patent law and practice for scientists, engineers and managers involved in business and technology. The workshop provides an overview of patent protection and trade secret protection. The workshop also covers the fundamentals of how to identify, and document an invention, search for patents related to the invention, and apply for a patent application. In particular, attendees will become familiar with the types of patent applications, patentability requirements, the parts of a patent application, and the prosecution process for getting a patent application allowed before the U.S. Patent and Trademark Office (USPTO). Attendees will also become familiar with foreign filing of patent applications, post grant patent options including mechanisms for challenging a U.S. patent before the USPTO, the various types of patent opinions and patent litigation. No prior knowledge of patent law is required.
Patent Law Fundamentals for Scientists, Engineers, and Managers - Part 3 of 4
Robert A. Migliorini, February 2022
This 4-part workshop is intended as an introductory primer in patent law and practice for scientists, engineers and managers involved in business and technology. The workshop provides an overview of patent protection and trade secret protection. The workshop also covers the fundamentals of how to identify, and document an invention, search for patents related to the invention, and apply for a patent application. In particular, attendees will become familiar with the types of patent applications, patentability requirements, the parts of a patent application, and the prosecution process for getting a patent application allowed before the U.S. Patent and Trademark Office (USPTO). Attendees will also become familiar with foreign filing of patent applications, post grant patent options including mechanisms for challenging a U.S. patent before the USPTO, the various types of patent opinions and patent litigation. No prior knowledge of patent law is required.
Patent Law Fundamentals for Scientists, Engineers, and Managers - Part 2 of 4
Robert A. Migliorini, February 2022
This 4-part workshop is intended as an introductory primer in patent law and practice for scientists, engineers and managers involved in business and technology. The workshop provides an overview of patent protection and trade secret protection. The workshop also covers the fundamentals of how to identify, and document an invention, search for patents related to the invention, and apply for a patent application. In particular, attendees will become familiar with the types of patent applications, patentability requirements, the parts of a patent application, and the prosecution process for getting a patent application allowed before the U.S. Patent and Trademark Office (USPTO). Attendees will also become familiar with foreign filing of patent applications, post grant patent options including mechanisms for challenging a U.S. patent before the USPTO, the various types of patent opinions and patent litigation. No prior knowledge of patent law is required.
Patent Law Fundamentals for Scientists, Engineers, and Managers - Part 1 of 4
Robert A. Migliorini, February 2022
This 4-part workshop is intended as an introductory primer in patent law and practice for scientists, engineers and managers involved in business and technology. The workshop provides an overview of patent protection and trade secret protection. The workshop also covers the fundamentals of how to identify, and document an invention, search for patents related to the invention, and apply for a patent application. In particular, attendees will become familiar with the types of patent applications, patentability requirements, the parts of a patent application, and the prosecution process for getting a patent application allowed before the U.S. Patent and Trademark Office (USPTO). Attendees will also become familiar with foreign filing of patent applications, post grant patent options including mechanisms for challenging a U.S. patent before the USPTO, the various types of patent opinions and patent litigation. No prior knowledge of patent law is required.
Experimental Methods to Determine Thermoformability
Amit Dharia, January 2022
New materials, advances in processing machinery, and the increasing demand for packaged goods are driving the growth of the thermoforming industry, which is expected to grow at 5.4% AGR between 2019-2023. The simple-looking thermoforming process is a complex interplay between– heating, stretching, and cooling. The material properties, processing mode, process parameters, and tool material can affect the functional and economic outcome.  The gains made by the low tooling cost, shorter lead time, and rapid change-over can easily be lost in running expensive trials and continuous process adjustments. Therefore, it is essential to understand the material response to process conditions by measuring and reporting properties relevant to the thermoforming. In this presentation, properties affecting thermoformability and various tests used in the industry will be discussed, and lessons learned from testing will be presented.
Fourier Transform Infrared Spectroscopy in Failure and Compositional Analysis
Jeff Jansen, January 2022
Fourier transform infrared spectroscopy (FTIR) is a fundamental analytical technique for the analysis of organic materials. It provides critical information in the evaluation of polymeric materials, including material identification, contamination, and degradation. The webinar will present a fundamental understanding of the technique and the following topics will be covered:
  • Theory of Infrared Spectroscopy
  • Test Result Interpretation
  • Application to Polymeric Materials
    • Material Identification
    • Contamination
    • Degradation
  • Sample Preparation Supplementing FTIR With Other Techniques
  • Cases Studies
Thermal Dependency of Plastics
Jeff Jansen, December 2021
Because of their molecular structure, polymeric materials have different properties compared to other materials, like metals. Due to their viscoelastic nature, polymeric material properties our temperature dependent. As the temperature is increased, the polymer chains are further apart, there is more free volume and kinetic energy, and the molecules can slide past one another and disentangle more easily. The physical properties and performance of polymeric materials, such as strength, stiffness, and impact resistance, are highly dependent on the temperature at which the stresses applied. Over a temperature range, polymers will pass through key transitions, such as beta transitions and glass transitions, as well as softening and melting. Understanding the implications of these transitions and their correlation to molecular structure is useful in material selection and avoiding premature failure. The goal is that this webinar will provide:
  • A better understanding of how plastic mechanical properties change as a function of temperature.
  • The ability to recognize that there are both lower-end and upper-end temperature limits for polymeric materials.
  • Familiarity with the testing that can be utilized for evaluating the effects of temperature on plastics, as well as tests that are commonly used but provide very little useful information.
Outline
  • Viscoelasticity
  • Temperature
  • Thermal Transitions
  • Thermal Performance
  • Elevated Temperature
  • Low Temperature
  • Understanding Continuous Service Temperature Limits
Plastic Datasheets: What They Do and Don't Tell Us
Jeff Jansen, November 2021
UL Prospector lists tens of thousands of different plastic resins. When tasked with material selection, 99% of us turn to the typical property data sheet. What are the issues with the single point numbers listed on these datasheets? Why does sole reliance on this information often lead to failed product? What should we be doing instead? Selecting the proper material for an application requires the right data. While plastic project have evolved over the past 50 years, the data we are given has not evolved. This webinar will present the deficiencies of the information presented on plastic data sheets, and suggest what is really needed.
Acrylic Processing Aids for PVC Foam
John Cornetta, Dr. Rich Ketz, and Dr. Manoj Nerkar, November 2021
It doesn’t take a PhD to know that creating materials that are lighter weight, yet durable is a complex challenge. It does, however, take some serious brain power to create new products that can withstand extreme elements while utilizing less material. That’s why we’re inviting you to learn how (PARALOID™ and SURECEL™) Acrylic Processing Aids can efficiently enable PVC Foam Technology with consistent quality, broad processing conditions, and improved sustainability footprint. Join the Dow team that has been working across industries and applications to develop the next generation of Acrylic Processing Aids for PVC Foam Technology. The webinar will cover:
  • Acrylic Processing Aid Fundamentals for Rigid PVC foam
  • Dow’s Acrylic Processing Aid Product Portfolio
  • Formulation examples
  • Case studies and more
How to Implement a Purge Program and Stop Wasting Money
Lenny Gutierrez, November 2021
Many processors know that they should implement a purge program but just don’t know how to get started. This presentation will discuss what data to collect, how to collect it, and how to measure performance when you introduce purging to your process. Our purging expert will explain different tangible ways purging compounds can improve efficiency and will discuss several customer examples of how purge programs helped them reduce costs.
Thermoforming Goes Digital – New Opportunities with HP Latex Inks
Thomas Giglio, October 2021
HP Latex ink technology is enabling traditional, tried-and-true industrial plastics companies to keep their businesses relevant by adapting to a direct-to-substrate printing technology that gives them access to a deeper, wider product development capacity, faster go-to-market routes and efficiencies realized in materials, labor and capacity. Digital solutions with such capability not only differentiate these companies from their competition but also enable them to provide new products and solutions – digitally decorating plastics with inks that are thermoformable allow for expansion into new markets with new products.
Failure of Plastics Session 2
Jeff Jansen, October 2021
This 2-part webinar series will cover a considerable range of topics important in understanding, diagnosing, and preventing plastic component failure. The most efficient and effective approach to plastic component failure is by performing a systematic failure analysis. Someone once said, “if you don’t know how something broke, you can’t fix it”, and this certainly highlights the importance of a thorough understanding of how and why a product has failed. This webinar series will introduce the attendees to information they need to gain this understanding.
  • The material covered will include: Essential knowledge of why plastic components fail, 

  • The five factors affecting plastic part performance, 

  • The process of conducting a failure investigation and methods for understanding how and why a product has failed, 

  • The importance of ductile-to-brittle transitions and their role in plastic component failure, 

  • The major plastic failure mechanisms, 

  • Failure analysis case studies
The webinar series will focus on practical problem-solving techniques and will utilize case studies to illustrate key aspects of plastic failure and prevention. Participants will gain a better understanding why plastic components fail, and how to avoid future failures by applying the knowledge learned.
Failure of Plastics Session 1
Jeff Jansen, October 2021
This 2-part webinar series will cover a considerable range of topics important in understanding, diagnosing, and preventing plastic component failure. The most efficient and effective approach to plastic component failure is by performing a systematic failure analysis. Someone once said, “if you don’t know how something broke, you can’t fix it”, and this certainly highlights the importance of a thorough understanding of how and why a product has failed. This webinar series will introduce the attendees to information they need to gain this understanding.
  • The material covered will include: Essential knowledge of why plastic components fail, 

  • The five factors affecting plastic part performance, 

  • The process of conducting a failure investigation and methods for understanding how and why a product has failed, 

  • The importance of ductile-to-brittle transitions and their role in plastic component failure, 

  • The major plastic failure mechanisms, 

  • Failure analysis case studies
The webinar series will focus on practical problem-solving techniques and will utilize case studies to illustrate key aspects of plastic failure and prevention. Participants will gain a better understanding why plastic components fail, and how to avoid future failures by applying the knowledge learned.
Advanced Material Characterization Performing Rheological Investigations and Dynamic Mechanical Analysis with a Multidrive System
Abhishek Shetty, September 2021
A new measuring device concept is introduced which combines an electronically commutated (EC) motor as a rotational top drive and a moving magnet linear drive or another rotational EC motor, as bottom drive to enable rheological measurements and dynamic mechanical analysis (DMA) on one single device. The concept enables various modes of operation by using different combinations of the bottom drive. Three different testing modes can be realized when using the upper rotational EC motor and additionally a second rotational EC motor as the bottom drive. While the use of the upper EC motor allows one to perform measurements in combined motor transducer (CMT) mode, the use of both EC motors allows one to work in the separate motor transducer (SMT) mode and the counter movement mode on one device. CMT mode not only allows all tests and options a single drive rheometer can do but advanced powder rheology characterization in the fluidized dynamic state through the use of a classical pressure drop device attached to the rheometer are also possible. A ring shear cell attached to the rheometer in CMT mode allows one to do quasi-static characterization of granular materials at elevated temperatures and humidities. In the separate motor transducer (SMT) mode the bottom motor acts as the actuator and the top motor acts as the torque transducer. A SMT mode has advantages in sensitivity under certain measurement conditions and allows the use of special tools such as a cone-partitioned-plate (CPP), which enables measurements with edge fracture prone samples, extended frequency sweeps with soft materials such as pressure sensitive adhesives where inertia of the measuring drive can effect results etc., In counter movement mode both motors rotate or oscillate in opposite directions which enables the creation of a stagnation plane in the sheared sample which could be beneficial for investigation of Taylor-Couette instabilities or extending the range of shear rates for high shear rheology applications or for rheo-microscopy, since the structures under investigation are not moving out of the field of view when shear is applied. In addition, combining the upper rotational motor with a linear drive in the bottom permits one to apply force and deflections in the axial direction. This is suitable to perform dynamic mechanical analysis in bending, tension, compression, and torsion. DMA in tension by the linear drive and DMA in torsion by using the upper rotational drive are possible on the same specimen which allows one to extract the Poisson’s ratio of the material. In this talk benefits of having such a modular device configuration in different modes will be showcased via different application testing examples ranging from liquids, solids to granular materials.
Acrylic Impact Modifiers for PVC: Core-shell modifier chemistry and performance
Raber Inoubli, July 2021
Part 2 of the All Things PVC Workshop series. The speaker will review the basics of core-shell chemistry focusing on acrylic technology and its advantages for mechanical property improvement and weatherability in PVC formulating. Core principles of mechanical property improvement via stress concentrators for PVC matrices and formulations will be presented. In addition to rheology and mechanical property enhancement via acrylic chemistry, the presentation will also provide perspective on choosing the best impact modifier based on specific formulation needs or application types where standards vary based on the final needs of the vinyl building product, for example. The talk will follow-up on the principles covered in the introduction to PVC Gelation and Formulation.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net