The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Nora C. Restrepo Zapata, Tim A. Osswald, Juan Pablo Hernandez Ortiz, May 2014
The decomposition kinetics of p’,p-oxybis benzene sulfonyl hydrazide (OBSH) and the change of its behavior when mixed with additives and rubber are determined by using thermal analysis. This study uses Differential Scanning Calorimetry (DSC) and Thermogravimetry (TGA) to understand the exothermic reaction. Different kinetic models were evaluated using the least-square method to determine activation energies and reaction variables. As a result, it was found that the Kamal-Sourour model is the most accurate reaction model, confirming the information found in literature.
Hongyu Chen, Mark J. Cieslinski, Donald G. Baird, May 2014
This work is concerned with the effect that the ratio of initial pellet length to screw channel width, or diameter, has on the percent of glass fiber breakage during processing in the screw. Experiments were carried out on a lab-scale single screw extruder. Data has been fit using an exponential decay model with a kinetic decay constant and a critical length value. This empirical model has been tested on glass fiber breakage in another size screw with a diameter 1.66 times larger than that of our single screw extruder and reasonable agreement with the empirical exponential decay model and experimental results are observed. For carbon fiber, similar breakage trends were observed.
Maryam Emami, John Vlachopoulos, Michael Thompson, May 2014
This work explores the influence of rheological properties on polymer foam development in non-pressurized systems. To understand the complex contributions of rheology on different stages of the foam processing in such systems, visualization studies were conducted using a polymer-foaming microscopy setup. Morphological analysis was used to determine the rheological processing window in terms of shear viscosity, elastic modulus, melt strength and strain-hardening, intended for the production of foams with greater foam expansion and more uniform bubble size distribution.
The science of Tribology is generally known only to certain specialists who focus on its study and the effects on industrial materials. It can drive many decisions that are made daily by the injection mold designer. In many molds there are assemblies that benefit from optimizing a surface, to minimize the effect of wear, which can be the result of one surface coming in moving contact with another. The basics of Tribology are important for all designers to understand because it may improve the longevity, of the assembly, through design or to advise the end user of adequate, required maintenance. Component longevity is the goal, but ultimately cost savings is the outcome, when replacement components and lost man-hours make an assembly unaffordable to maintain and maintenance replacements are required too often. When Tribology knowledge can be used to extend the life of specific components so they will last longer and insure the assembly’s practical life, everyone benefits. This paper will review basic definitions, concepts the designer should have in mind, the effect on industrial materials and verification methods. At the very least, this information will lead to an understanding that additional testing and analysis may be required for verification of product life.
Plant-based bio-fibers can reduce the weight of automotive composites if technical hurdles such as the rampant moisture uptake and loss of composite mechanical properties with exposure to moisture can be controlled. Pacific Northwest National Laboratory is developing chemical additives for thermoset resins that enable dramatic reduction in bio-fiber composite moisture uptake and loss of mechanical properties following exposure.
This review of recent work and technical developments by researchers at University of Maine discusses the opportunities challenges innovations and properties of micro- and nanocellulose fiber-filled thermoplastic composites (particularly engineering thermoplastic composites with melting points above 220C) and hydrophobic (polypropylene- and polyethylene-based) polymer composites.
This presentation reports an innovative and sustainable approach to fiber surface treatment that improves the fire resistance of cellulosic fiber/ epoxy composites made with flax fiber. This new approach not only retards burning of cellulosic fiber but also produces self-extinguishing cellulosic-fiber composites. The low-cost treatment was carried out in aqueous solutions using non-toxic inorganic chemicals
This presentation will summarize Oak Ridge National Laboratory’s (ORNL’s) research activities related to additive manufacturing (AM). ORNL’s Manufacturing Demonstration Facility is exploring the use and further development of a wide range of AM technologies with basic research tasks focused on 1) new material development 2) in-situ process monitoring and control and 3) expansion of system capabilities. Use of AM across various industries will be highlighted as well as how ORNL is developing new technology in this space.
This presentation discusses the difficulties that Lockheed Aerospace experienced routing composites for the F-35 fighter and how they overcame those challenges through a collaborative effort.
This paper describes the recycling of automotive headliner postindustrial waste into useful composite panels. The process relies on granulating the waste blending it with a 100% solids VOC-free MDI isocyanate adhesive and thermally molding the mixture under pressure using atmospheric moisture as the curing agent.
Rapid Molding of Thermoplastic Composites A crude bench-top setup was used to demonstrate a rapid resin transfer molding (RTM) process to make plaques roughly 25 cm wide 40 cm long and 0.5 cm thick from cyclic polybutylene terephthalate (cPBT). A 14 minute cycle was demonstrated. The cycle time included a 7 minute heating period used to increase the 150C de-molding temperature to the cure temperature of 230C in the forced hot air oven. The plaques demonstrated cure completion and molecular weight build consistent with commercial grades of PBT
This paper deals with plastic front and rear seat designs that provide more than 20% weight reduction for improved fuel efficiency and lower CO2 emissions. The materials of construction include recyclable plastics and “green” polyurethane foam making this design eco-friendly. Low cycle time reduced part count and assembly time optimized contours for passenger comfort and reduced material consumption lead to cost-competitive design.
Glass mat thermoplastic (GMT) composites have been available for many decades. Recent developments in woven-fabric reinforced GMT as well as improved computer simulations have enabled the material to be used in new applications that previously were designed solely in steel. This presentation will focus on utilizing computer simulations and best design practices in order to specify the most appropriate GMT formulation for a given application.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.