The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Melt extrusion has been gaining interest in the pharmaceutical industry due to the continuous nature and ability to provide unique dosage form characteristics. Enhancement of oral bioavailability to enable drug products has been exploited extensively using melt extrusion. In this study melt extrusion was used for the preparation of griseofulvin extrudates. Using this technology amorphous formulations using non-ionic polymers were prepared. Compositions were evaluated for physical characteristics, chemical performance and dissolution rate. Results showed that all formulations could be prepared below the melting temperature of the drug substance and the resulting formulations provided significant levels of supersaturation during dissolution testing.
Yanting Guo, Nemet Hossieny, Chul B. Park, May 2011
This paper presents the design of a lab-scale bead foaming system for investigating the mechanism of the formation of cellular morphology and evolution of the crystal melting peaks of the expanded beads. A propeller-guided-cylinder design was incorporated to enhance the circulation during the heating, saturation and downward force during the depressurization of the polymer pellets/water/blowing agent mixture. EPP beads of an average 16-time expansion ratio were fabricated and an extensive study will be conducted to examine the effects of processing parameters on the foaming and crystallization behavior of the beads.
Ica Manas-Zloczower, Marcio Loos, Jingting Yao, Donald Feke, May 2011
Epoxy based composites containing multi-walled carbon nanotubes (MWCNTs) have been successfully prepared. The effects of the addition of eight different block copolymers on the dispersion stability of MWCNTs have been systematically analyzed. The suspension of CNTs in different components of the epoxy, i.e epoxy resin and hardener, have been evaluated by preparing suspensions using a tip sonicator and different amounts of block copolymers relative to the concentration of CNTs. The stability of MWCNTs in various media was investigated by using a centrifugation technique. Dispersing agents suitable for the acquisition of long-term stable dispersions of MWCNTs have been identified.
Previously, it had been demonstrated that extensional stresses has strong effects in cell nucleation and growth within plastic foaming processes. In particular, our previous work investigated the foaming behavior of polystyrene, an amorphous polymer, under extensional stress via in situ observation of the foaming processes. On the other hand, the effects of extensional stress on semi-crystalline polymers are still not well-understood. This study aims to fill this gap by investigating the foaming behaviors of three different types of polypropylene (PP): linear PP, branched PP, and a PP-PE copolymer, via in situ observation.
Mehdi Karevan, Md Bhuiyan, Kyriaki Kalaitzidou, May 2011
Analytical methods have been widely used to predict mechanical properties of polymer composites. The theories assume perfect filler-matrix interfacial contact and homogenous dispersion of individual fillers into the matrix, which however is not what is observed experimentally especially in nanocomposites. The reason is that in nano-size reinforced polymers the dominant effects of interfacial interaction and presence of fillersƒ?? agglomeration have to be considered. This study investigates the effects of these two factors on the tensile modulus of nanocomposites by combining experimental observations and micromechanical models.
Md Bhuiyan, Raghuram Pucha, Mehdi Karevan, Kyriaki Kalaitzidou, May 2011
This study focuses on understanding the deviation between experimentally obtained and numerically predicted tensile modulus of carbon nanotube /polypropylene (CNT/PP) composites. The tensile modulus is measured according to ASTM D638 testing method. Characteristics such as presence and size of CNT agglomerates, voids at the CNT-PP interface and width and modulus of the CNT-PP contact area are studied using atomic force microscope (AFM) and scanning electron microscope (SEM). Finite element analysis is performed to determine the effective Youngƒ??s modulus considering i) ideal case (no CNT agglomeration, perfect CNT-PP contact) and ii) non-ideal case where the experimentally observed characteristics are accounted for.
Vadim Krongauz, Yann-Per Lee, Anthony Bourassa, May 2011
Thermogravimetric (TGA) monitoring of poly(vinyl chloride) PVC degradation kinetics by loss of HCl is complicated by plasticizer evaporation, unlike monitoring by color change due to conjugated polyenes formation. Thermal degradation of PVC films plasticized with diethylhexyl phthalate and tri-isooctyl trimelitate was monitored by color change, by optical density at 350nm, and by TGA at 160C to200C. Plasticizer-free PVC powder degradation kinetics was obtained by TGA at temperatures from 160C to 220C. Apparent activation energies of plasticizer-free PVC powder degradation was 152kJ/mol (by TGA); for plasticized PVC-ranged from 165kJ/mol to 180kJ/mol (color change) and 147kJ/mol (by optical density at 350nm).
POM or polyoxymethylene is an engineering resin used for the past 50 years primarily in injection molding. Parts thusly formed typically replace metal. POM's usefulness is derived from its strength, stiffness, toughness, creep resistance and natural lubricity. Both POM copolymer and homopolymer producers compete in this market space. POM homopolymer grades exhibit a small but significant advantage in mechanical properties, while the copolymer grades exhibit advantages in thermal stability and chemical resistance. This paper presents a new POM copolymer grade with mechanical properties essentially equivalent to homopolymer while maintaining the thermal stability and chemical resistance of POM copolymers.
Mehdi Mahmoodi, Simon Park, Uttandaraman Sundararaj, Mohammad Arjmand, May 2011
In this study, we investigate injection molding of 5 wt% CNT with polystyrene polymer matrix into a mold equipped with three different cavities. Electrical conductivity testing was applied in the thickness and in-flow directions of the molded samples. The injection molding conditions of mold temperature, melt temperature, injection/holding pressure and injection velocity were varied to investigate the effect of process parameters on the electrical conductivity of each sample. Among the process parameters, the injection velocity and melt temperature showed the largest influence on alignment and, consequently, the electrical conductivity of the samples.
There is a need for angioplasty related products to achieve lower profiles. This means that devices have the opportunity to reach more distal lesions and have potential uses in neural catheterisation. Lower profiles can be achieved by reducing the wall thickness, and thus, reducing the outer diameter of the tubing. However, this, on its own, can have major consequences on the mechanical properties and performance of the device. One of these consequences is the kinking of tubing. This paper identifies a test method that can accurately reflect the kink properties of any thermoplastic tubing using Dynamic Mechanical Testing Analysis (DMTA)
Genaro Gelves, Joyce Chau, Celine Bellehumeur, Uttandaraman Sundararaj, May 2011
Hybrid nanocomposites of multi-walled carbon nanotubes and copper nanowires in polystyrene were prepared by miscible mixing and precipitation method. Extremely low electrical percolation thresholds in MWNT/PS and CuNW/PS nanocomposites were observed at 0.052 and 0.67 vol. percent, respectively. Electrically conductive polymer nanocomposites exhibiting high Electromagnetic Interference (EMI) Shielding effectiveness are reported.
Natalie Rudolph, Florian Pichl, Tim Osswald, May 2011
The pressure effect on viscosity is often neglected during injection molding. However, the pressure shift factor is in the same order of magnitude as the temperature shift factor. In the presented work, a new dimensionless number R is presented which relates the temperature to the pressure effect on viscosity. By calculating R for the temperature and pressure profile, it can be seen that the influence of pressure is always high at the entrance of the cavity but can be neglected at high melt temperatures. It is shown that the opposing effect of viscous dissipation on viscosity has to be considered.
Carlos Rios-Soberanis, Takenobu Sakai, Shuichi Wakayama, Jose Rodriguez-Laviada, Emilio Perez-Pacheco, May 2011
A non crimp fabric (NCF) with a stacking sequence of [0?§,+45?§,90?§,-45?§] embedded in epoxy resin matrix was analyzed. Samples for mechanical test were obtained from laminates at different orientations depending on the textile direction at 0?§, 45?§ and 90?§ in order to identify the failure mechanisms. Tension mode tests (static and cyclic) were carried out to evaluate the evolution of damage using as a main tool the acoustic emission technique that allows monitoring the mechanical behavior of the materials during the test in real time.
We present experiments and simulations on development of hierarchically-structured materials using nanofibers of self assembling block copolymers blended with functional inorganic nanoparticles. Materials developed in this work show high porosity, large surface area and precise control over nanoscale-assembly, exhibiting an attractive design for application as electrode/catalyst layer in fuel cells.
In particular, a novel scheme has been utilized to obtain equilibrium block copolymer self assembly in nanofibers. These self assembly structures are then used as templates to direct the location of functional nanoparticles in nanofibers. Molecular dynamics simulations have been conducted to understand the effect of material processing on assembly.
The battery system powering the Volt is based on a repeating frame architecture that is used to assemble hundreds of Lithium-ion cells in series to achieve the necessary balance of power and weight to efficiently move the vehicle. Each cell is placed in a frame which mates with its nearest neighbors; these repeating frames are injection molded using an engineering thermoplastic. Due to very stringent assembly requirements, each repeating frame is precision molded to hold key dimensions to very tight tolerances. This paper will discuss the precision aspects of the molding process that were employed to achieve the specified tolerances.
Chuan Wang, Sean Petzold, Scott Eisenhardt, Tim Osswald, May 2011
The most common method currently used for measuring coefficient of friction is the pin-on-disk tribometer. Although widely employed the traditional pin-on-disk test can be both expensive and time consuming. Therefore this paper proposes an alternate method to friction measurement using the Timoshenko / Van Karman device. A test system is created using POM as the measured material. Experiment result shows that the current device design is adequate for obtaining generalized friction coefficients, and that output friction data from this system is independent of normal contact force. Further analysis with numerical simulation indicates correlation between material weight and static transition velocity.
Maria Noriega, Alberto Naranjo, Tim Osswald, May 2011
Actual experimental techniques designed to study melting behavior of polymers inside the screw extruder suffer from lack of functionality and time consuming procedures. Their invasive nature affect friction characteristics and heat transfer, influencing the outcome of measured parameters. This paper presents a technique (Patent No. 7314363) that can capture experimental data and images from inside the extruder at short response times using a highly instrumented 45 mm extruder with built-in sensors and small quartz windows. The melting behavior of polyethylene and polypropylene were visualized and measured with this technique. A comparison of the melting behavior of both polymers was obtained.
Jo Ann Ratto, Sarah Schirmer, Danielle Froio, May 2011
Nanocomposite films were investigated to improve oxygen barrier properties for food packaging applications. Ethylene co-vinyl alcohol (EVOH) was used to let-down an EVOH nanocomposite masterbatch to 1, 3 and 5% loadings utilizing kaolin as the nanoparticle. Co-extrusion was used to produce 5-layer blown films consisting of the EVOH/kaolin nanocomposite core layer. Films were characterized before and after retort sterilization for thermal, mechanical, and barrier properties to determine any dependence upon nanoparticle concentration.
Byoung-Ho Choi, Alexander Chudnovsky, Hoang Pham, May 2011
Impact modified polypropylene, which is a blend of polypropylene with an impact modifier such as ethylene propylene rubber, ethylene alpha olefin elastomers or styrenic based rubber, is commonly used for applications with impact resistant requirements. In addition to the shape, amount and size distribution of rubber particles, crazes give additional deformation after elastic deformation until the necking process. In this study, a quantitative modeling of tensile behavior of impact modified polypropylene based on a micromechanical model of crazing initiated from rubber particles is presented. An accurate prediction of the stress-strain relationship until necking is possible based on the proposed model.
Stephen Johnston, David Kazmer, Louay AbouShady, May 2011
Multivariate modeling methods such as Principle Components Analysis (PCA) and Projection of Latent Structures (PLS) are increasingly used for process control. A design of experiments was performed on an instrumented tubing extrusion process. Results were used to develop 14 unique PLS and PCA models. A blind validation was performed to evaluate the model sensitivity to 18 imposed process faults. Results indicate that multivariate techniques are well suited for detecting faults in the extrusion process, and that PLS models slightly outperformed PCA models. Identifying the root cause of the process fault was quite challenging and requires careful instrumentation and data analysis.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.