The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
The FMVSS 301R Fuel System Integrity Test requirements on closures as well as field experience have increased demand on the liftgate performance. The energy imparted to the liftgate structure in this test configuration is difficult to absorb with inherently brittle composite materials. This report documents the load-displacement response of several reinforced composite liftgates. The liftgates were evaluated with a static test designed to simulate the deformations experienced in a rear 70% offset deformable barrier crash test.
In automotive engineering the development of light weighted structures is very important to save fuel and so to reduce the pollution. Therefore the usage of new materials like fiber reinforced plastics is very attractive even for dynamically loaded parts. Nevertheless there is still little knowledge about the fatigue behavior of fiber reinforced plastics. So it is difficult to make an optimum design according to the divergent requirements on weight and strength. Some research works have been already done by BMW [1 2] and others [3-5].
Hybrid laser plastic welding is a process to enhance the limitations of conventional laser plastic welding in order to provide a joining technology for large three dimensional parts. Because of existing tolerances of injecting moulded parts it is necessary to provide a maximum gap-binding capability of the welding process. The poor capability of bridging gaps between the joining partners at contour laser welding and long cycle times are still limiting the range of applications. At hybrid welding the energy that is being deposited into the material is provided by a semiconductor laser and a secondary source of radiation e.g. a halogen lamp at the same time. A hybrid welding head provides one focal point of the laser and a secondary radiation source. The polychromatic emission spectrum of the halogen lamp causes a volumetric absorption of the incident radiation in the upper joining partner. This leads to a more symmetric temperature distribution around the welding plane and different lateral heat fluxes compared to conventional laser welding processes. This paper will discuss the effects of the larger temperature field and will disclose the benefits compared to conventional laser welding. Experimental results are showing that a larger process window and faster feed rates are possible. Compared to conventional laser welding the seam strength is in spite of a faster feed rate conspicuously improved. The gap-binding ability is rising with a hybrid welding system threefold. In consequence of the secondary radiation and the modified temperature distribution there are less residual stresses because the ability of the material to creep is stopped. The hybrid welding process is comparable to a laser welding process and a tempering of the material at the same time.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.