SPE-Inspiring Plastics Professionals

SPE Library


SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!
Conference Proceedings
Magazine and Collected Articles
Newsletters (SPE Chapters)
Recycling
Rheology
Podcasts
Technical Article Briefs
Webinars
Plastic Surveys
Diversity. Equity and Inclusion
SPE News
SPE YouTube Channel
Event Recordings

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

New Technology for Coating of a Polymeric Catalyst onto a Metallic Substrate
Hossein Hosseini, May 2007

This work is based on coating a polymeric catalyst onto a metallic substrate by using of a surface coating technology. We have used adhesion promoters (Silane compounds) under sol-gel process in order to achieve maximum stability of coating and suitable strength properties. Structural packings produced by this method would have unique physical properties and may be used in catalytic distillation.

Thermal and Electrical Conductivity of Carbon/Liquid Crystal Polymer Composites for Fuel Cell Bipolar Plates
Rebecca A. Hauser, Julia A. King, Jason M. Keith, Rodwick L. Barton, Michael G. Miller, May 2007

One emerging market for thermally and electrically conductive resins is for bipolar plates for use in fuel cells. Bipolar plates require high thermal and electrical conductivity. In this study, carbon black and synthetic graphite were added to a liquid crystal polymer and the resulting composites were tested for thermal and electrical conductivity. Single filler composites containing 2.5 to 15 wt% carbon black and 10 to 75 wt% synthetic graphite were tested.

Techniques to Determine Resistance to Surface Damage on Decorated Plastics
Alan Jaenecke, May 2007

Most consumers believe the price paid for a product is directly related to its inherent level of quality. With decorated plastics, how robust the product finish is before it becomes damaged or worn out" is an essential element of this perceived quality. This paper presents an introduction to the mechanisms of surface wear and scratch damage and the importance of conducting controlled laboratory tests. An overview of several commercially available instruments is offered including suggestions on how to recreate and measure "real-world" damage."

Polyurethane-Carbon Nanofiber Composites for Shape Memory Effects
Guillermo A. Jimenez, Sadhan C. Jana, May 2007

Thermoplastic polyurethane-carbon nanofiber, TPU-CNF, composites were prepared in situ in a chaotic mixer. Two types of CNF with different levels of surface oxidation were mixed with a shape memory TPU. Electrical conductivity, thermal behavior, and mechanical properties were investigated. Electrical and thermal-induced shape recovery behaviors were evaluated. TPU with treated CNF showed better dispersion, crystallinity, tensile properties, and better shape memory properties such as higher shape recovery force than their counterparts with untreated CNF.

Rotomolding with Micro-Pellets when Using Aluminum Pigments
Robert Schoppe, May 2007

Rotomolding parts with aluminum pigments has been a challenge, as this process provides limited aesthetic effects. Rotomolding compounds made by fine micro-pelletization provided a good method of aluminum pigment incorporation. Our research was to determine the benefits and limitations of this manufacturing method.

Impact Resistance of Selected Immiscible Polymer Blends
Wantinee Viratyaporn, Richard L. Lehman, Jayant Joshi, May 2007

Immiscible polymer blends were prepared by melt extrusion using a single screw extruder in the systems PS/HDPE and PS/PP to assess the effect of composition and morphology on tensile Young's modulus and impact resistance. Results from the work show that tensile modulus nearly follows rule of mixture behavior for both systems, although better performance is shown by the PS/PP blends. With regard to impact resistance, the PS/HDPE system showed poor, incompatible performance, whereas excellent impact resistance was noted in the PS/PP blends.

The Influence of Different Surface Roughness on Microfluidic Flow Time
W.R. Jong, T.H. Kuo, S.H. Peng, H.H. Chiu, May 2007

With the maturity of MEMS technology, the size in micromachining technology has progressed from millimeter to micrometer. Therefore, the filling behavior, driving principle, flowing control caused by capillarity phenomena become crucial. This study utilizes different processes, in order to make the detailed tangent plane, the precise tangent plane, and the smooth tangent plane of the acrylic microchannel. Results show that as the surface roughness increased, the flow time is decreased, and the flow-front of microfluidic becomes more unsteady.

A Comparison Study of Inorganic Fillers on the Performance of Polypropylene (Part 2)
Zhiyong Xia, Dennis Prendes, May 2007

In part one of this study, we have reported the comparison between EMforceTM calcium carbonate with other inorganic fillers, such as talc and glass fiber in reinforcing polypropylene. In this study, we have investigated the combination between the EMforceTM calcium carbonate with talc for reinforcing polypropylene.

Impact of DIDP on Outdoor Weatherability of Flexible PVC
Paul H. Daniels, May 2007

Recently, market forces have combined to reduce the supply and increase the cost of linear sidechain dialkyl phthalate plasticizers. Diisodecyl phthalate (DIDP) is, in many ways, an attractive alternative to these linear plasticizers but questions remain about its effects on weathering properties of flexible PVC. This paper looks at the effects of using DIDP or blends of DIDP with linear phthalate in flexible PVC exposed to outdoor weathering. Degradation mechanisms and additive packages to limit weathering damage are also discussed.

Mechanical, Electrical and Thermal Properties of MWCNT/Poly (Lactic Acid) Composites
Chen-Feng Kuan, Chia-Hsun Chen, Hsu-Chiang Kuan, Kun-Chang Lin, May 2007

The preparation of multi-walled carbon nanotube/ polylactide (PLA) composites is described. High electrical conductivity can be achieved at a low carbon nanotube loading. The carbon nanotube-induced crystallization can be controlled by the degree of the dispersion of carbon nanotubes in the PLA matrix.

Visualization and Modeling of Viscoelastic Drop Deformation and Breakup in Simple Shear Flow
Huaping Li, Uttandaraman Sundararaj, May 2007

The deformation and breakup of Boger-fluid drops in Newtonian liquids under simple shear flow were investigated by direct visualization using a specially designed Couette apparatus which enables visualization from two different directions (i.e. to get a 3-D image). Four types of breakup modes were observed. Boger-fluid drops can break up in simple shear flows along the flow axis or the vorticity axis. The breakup mode was found to depend on drop size, viscosity ratio, interfacial tension, matrix viscosity and drop phase viscoelasticity.

The Comparisons of IC Packages With/Without Underfill on the Thermo-Mechanical Characteristics
H.C. Tsai, W.R. Jong, S.H. Peng, May 2007

This research uses the validated finite-element analyses to study the thermo-mechanical behaviors of the 96.5Sn-3.5Ag, 95.5Sn-3.8Ag-0.7Cu lead-free solders and the classical 63Sn-37Pb solder bumped wafer level chip scale package on PCB assemblies subjected to a novel temperature cycle test. It can be seen that the same scale to the WLCSP and the WLCSP with underfill, the difference of the equivalent total strain range exceed an order of magnitude for all the three solder joints.

Physics of Amorphous Polymers
Gregory B. McKenna, May 2007

Amorphous polymers are of continuing great fundamental and practical interest. From the melt state through the glass transition these materials exhibit highly nonlinear properties that are readily interrogated using methods of both linear and nonlinear rheology and mechanics. Here we examine several novel methods developed by the author to investigate swelling in rubber, nonlinear behavior of polymer glasses and the behavior of materials at the nanoscale

Polymag Process; Separate & Recover Co-Molded Resins
W. John Collins, Eriez Magnetics, May 2007

The PolyMag Additive & Process enables the automated separation of mixed resin regrind. This innovative system reduces the cost of waste in multimaterial, co-molding operations. This paper will describe the process and applications for post-industrial resin recovery and recycling.

Measurement of the Glass Transition Temperature
Sindee L. Simon, May 2007

The glass transition temperature is an important characterizing parameter for amorphous polymers. However, there is considerable confusion regarding its measurement. In this paper, previous work dealing with measurement of the glass transition and elucidation of its underlying physics performed in collaboration with the PAD Founders' Award winner, Prof. G. B. McKenna, will be highlighted. In addition, recent studies will be discussed which focus on the relationship between the glass transition and the limiting fictive temperature.

Methods to the Smooth Surface of Microcellular Foam in Injection Molding
Jingyi Xu, May 2007

The microcellular foam of injection molding may focus on two major forming mechanisms of surface roughness: broken bubble from free flow front, and sheared bubble in the interface between mold wall and melt. With these mechanisms, most of the injection molding methods to the smooth surface of microcellular foam can be better understood. The analyses and morphology results of microcellular foams are useful to select the correct methods to the smooth surface of microcellular foam in injection molding.

The Simulation of Residual Stresses of Injection Molded Crystalline Polymers
Haihong Wu, Zhenfeng Zhao, Changyu Shen, May 2007

Based on the theoretical analysis about the morphology and the effect of crystallinity on the development of residual stresses for injection molded crystalline polymers, the residual stresses have been simulated by means of a new four elements viscoelastic mechanical model. Considering the crystalline orientation of injection molded parts, we view the parts as orthotropic solids to simulate the development of residual stresses in both longitudinal and transverse directions of the parts.

A Study on the Preparation of Irradiation Crosslinked Silicone Rubber Foam and its Mechanical Properties
Pengbo Liu, Daolong Liu, Wen Xu, May 2007

A silicone rubber foam was prepared through crosslinking with electron beam irradiation and foaming by the decomposing of blowing agent in hot air. The effects of irradiation dose, silicon dioxide content and the amount of blowing agents on the physical and mechanical properties of silicone rubber foam were studied in this paper in order to control and optimize the physical and mechanical properties of the silicone rubber foam.

Determining the Processability of Multilayer Coextruded Structures
Joseph Dooley, May 2007

Multilayer coextrusion is a process in which two or more polymers are extruded and joined together in a feedblock or die to form a single structure with multiple layers. This paper will discuss techniques for measuring experimental rheology data for monolayer and multilayer structures and how that data can be used for determining the processability of multilayer coextruded structures.

Polycarbonate Copolymers with Improved Heat and Hydrolytic Resistance
Krishna Maruvada, Niles Rosenquist, Dibakar Dhara, A. Purushotham, May 2007

Polycarbonate homopolymer when exposed to heat and humidity, under some conditions may suffer a reduction in the mechanical properties. This paper discusses significantly improved heat and hydrolytic resistance of copolymers of Polycarbonate with Polysiloxane. Retention of transparency coupled with good mechanical properties upon heat and hydrolytic aging makes these new materials excellent candidates for hot and humid engineering thermoplastic applications.







spe2018logov4.png
Welcome Guest!   Login

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net