The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
C. Mayer, A. Wöginger, M. Neitzel, J. Bauder, J v. Lindert, May 1999
Reinforced all-thermoplastic sandwich systems constitute a specific class of composites consisting of stiff faces and a thick and light core either porous or non-porous. They allow for a fast one-step and free of adhesive molding of continuously manufactured intermediates into complex parts (e.g. body panels, structural parts). Different all-thermoplastic sandwich systems were analyzed with respect to efficient processing techniques, manufacturing costs and mechanical performance. Furthermore, economical and technological benefits were exhibited and potential fields of application were derived. A significant potential for low-cost tooling was identified using self-expandable knitted cores whereas the application of a flowable core provided complex and stiff structures.
Jens H. Christensen, Henrik K. Rasmussen, Erik M. Kjær, Carsten L. Lauridsen, May 1999
In order to characterise materials using a simple and relative inexpensive method, the bubble inflation technique was modified. A polymer plate is clamped between a Teflon coated heating plate and a heated cylinder. By applying air through the heating plate the polymer membrane deforms into the cylinder. The top position of the membrane is monitored by fibreoptic sensors positioned in the cylinder. The pressure difference across the membrane is measured as well. The deformation in this inflation device is non-uniform and is only equal biaxial in the top of the deformed membrane. Due to this, the response is modelled using a finite element method in 3D Cartesian coordinates. The K-BKZ constitutive equation is used to model the non-linear properties of the material. Using linear viscoelastic properties from oscillatory shear measurements and measurements of the bubble inflation, estimation of the strain dependence in the constitutive equation is possible.
Oliver Schnerr-Häselbarth, Walter Michaeli, May 1999
Online quality control based upon empirical process models became a standard quality assurance tool for specific high complex and expensive parts produced in injection molding. The use of this control method is limited to special-educated engineers due to prerequisite knowledge in statistics and data analysis methods. At IKV algorithms based upon artificial intelligence have been developed to solve this problems and provide online quality control for each injection molded part without any specific education of the user. Well-known process knowledge modeled with Neuro-Fuzzy Algorithms reduces the design of experiments to a simple description of the molding. The new IKV Neural Network Algorithm enables a fully automated process modeling.
The injection molding of Liquid Silicone Rubber (LSR) represents a cost-efficient process for the production of high quality elastomer moldings. Due to the extreme thermal conditions in the mold and the low material viscosity a precise undervolumetric filling of the cavity is required to avoid underfilling or flash formation. Since process disturbances lead to changes in the mass of material injected into the mold a closed loop control of the injected mass based on the pvT-behavior is developed and realized on an industrial injection molding machine. Dependent on the course of the cavity pressure and the mold temperature a fuzzy-based algorithm determines the required changes of the dosing volume in case of process disturbances.
The distribution of material (weight) in an injection-molded container was quantified by cutting the container precisely into segments. Molding conditions were varied, and different polypropylene grades were used. The material distribution remained nearly uniform when increasing the packing pressure. Increasing the packing time above a certain limit, however, mainly packed material close to the gate. The material distribution was also affected by material parameters such as melt flow rate and nucleation. The shrinkage and the compressive strength of the container were related to the material distribution.
Blending polypropylene (PP) with an elastomeric phase such as EPDM is often performed in order to increase its fracture toughness. With the availability of metallocene polymerized Polyethylene (mPE), a new modifier with interesting mechanical properties can be chosen for blending with PP. This research investigates the influence of different grades of mPE in PP/mPE-blends on the blend's properties. Special emphasis is placed on the dynamic characteristic quantities. The load limits of the blend for applications in which dynamic stresses are predominant are determined by using the hysteresis measurement method.
We have investigated the hygrothermal effects on thin epoxy films (c.a. 60 µm thick) using mass uptake, swelling and uniaxial creep compliance measurements inside a dew formation-free transparent chamber capable of arbitrary relative humidity and temperature controls. We show that the physical aging behavior in humidity down-jumps in RH are the first demonstration of an asymmetry of approach induced by moisture changes in a material. Preliminary efforts to extend the TNM-KAHR models of structural recovery to account for moisture induced aging effects are presented.
The stress relaxation profiles across the skin-core-skin layers of injection molded polycarbonate and extruded polyethylene sheet are presented. The profiles were obtained by progressively removing the layers followed by stress relaxation tests using a Dynamic Mechanical Analyzer (DMA). The machined layers were characterized using the elastic modulus, Eo, and the relaxation time, ?o. It was found that the DMA was able to distinguish the differences in viscoelastic response across the thickness of the polymer samples. The variation in behaviour was consistent with the expected morphology and molecular orientation developed due to the processing method.
G.H. Menary, C.G. Armstrong, R.J. Crawford, May 1999
Simulations of the injection blow moulding process have been performed using the Abaqus finite element package. The simulations have been developed using three different material models (creep, hyperelastic and Buckley) and the thickness predictions have been compared against those obtained experimentally. The Buckley model was found to be the most efficient material model to model the blow moulding process. This model is now being used to investigate the design and development of preforms. A methodology has been developed to use the material distribution produced by the simulation to predict the shelf life of the container. A FORTRAN subroutine has been written which accesses the properties of each element of the model and from these properties the shelf life can be found.
Various ternary HDPE, PS and PMMA blends were prepared in one step using a brabender mixer. The morphology in this case consists of a PE matrix, a PS dispersed phase and PMMA sub-inclusions within the dispersed PS, the so-called composite droplet morphology. SEM observation and quantitative characterization were used to show that this complex morphology occurs within the first minute of mixing and remains stable thereafter. Furthermore, it is demonstrated that the presence of sub-inclusions generates a measurable change in PS droplet size. It is shown quantitatively that all the PMMA is present in sub-inclusion form.
Gregory T. Schueneman, Alan J. Lesser, Terry Hobbs, Bruce M. Novak, May 1999
Polymer matrix composites (PMC) are commonly exposed to excessive thermal gradients during service. Thermal degradation may not create distinct defects, yet will degrade the matrix modifying its behavior significantly. We have developed an ultrasonic spectroscopy method to characterize the thermal degradation of PMC. Ultrasonic spectroscopy utilizes the frequency spectrum of transmitted or reflected sound to characterize materials. Carbon fiber - epoxy laminate composite were exposed to short term - high intensity and long-term - low intensity thermal gradients. Frequency spectra were collected before and after thermal exposure. Changes in the frequency spectrum correlated with observed changes in mode I fracture toughness.
U. Yilmazer, M. Xanthos, S.K. Dey, S. Mitra, C. Feng, May 1999
A complex carpet residue is obtained as a byproduct in the tertiary recycling of nylon-6 fibers from used carpets. It consists of mainly polypropylene, styrene-butadiene rubber and calcium carbonate, and is potentially a low cost, high volume waste stream with consistent properties. In this study, composites of carpet residue with polyethylene were evaluated for building and construction applications. As received carpet residue was first compounded with low density polyethylene, homogenized and devolatilized in a twin screw extruder. Later, blocks were prepared by the intrusion process and tested for their mechanical and thermal properties as well as the leaching characteristics of heavy metals and organic carbon. It was demonstrated that the prototypes of these blocks can be potential candidates for use in a novel thermal spacer application.
M-W. Young, M. Xanthos, G.P. Karayannidis, D.N. Bikiaris, May 1999
In attempts to produce modified PET resins with improved rheology for applications requiring high viscosity and elasticity such as foaming or extrusion blow molding, a novel diimidodiepoxide of low MW was evaluated as chain extender/branching agent; its reactivity was compared with that of an ethylene/glycidyl methacrylate copolymer. Melt modified products were characterized by end-group analysis, intrinsic viscosity and for dynamic mechanical properties. It is shown that under certain conditions, reaction with less than 1 wt% diimidodiepoxide produced materials with rheological characteristics similar to those of extrusion foamable by gas injection PET grades.
Goknur Bayram, Ut/cu Yilmazer, Marino Xanthos, May 1999
The reaction of styrene-maleic anhydride (SMA) with polyethylene/methyl acrylate/glycidyl methacrylate (E-MA-GMA) was studied in a batch mixer and in a corotatmg twin screw extruder. Also, the mixing of a nonreactive blend of SMA with polyethylene/methyl acrylate (E-MA), with similar rheological properties to E-MAGMA, was studied under the same processing conditions. The mixing products of reactive and nonreactive systems exhibited drastically different properties. Reactive blends showed higher tensile modulus, tensile strength, strain at break and complex viscosity in comparison to non-reactive blends. The reactive blends had also finer morphology than the non-reactive ones.
Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) were employed to analyze the surfaces of PVC films with poor printability. FTIR indicated that, independent of formulation, the migrating species were metal carboxylates. Different techniques penetrate the surface to different depths allowing examination of a range of surface layers. XPS indicated that, in the worst case, the upper surface layer was comprised almost exclusively, of a mixed metal carboxylate. Atom percentages obtained by XPS indicate hydrolysis of the mixed metal carboxylate at the vinyl surface.
M. Xanthos, S.K. Dey, Q. Zhang, J. Quintans, May 1999
The rheological properties of conventional PET resins are not particularly suitable for low density extrusion foaming with physical blowing agents and as a result modified resins with higher melt viscosity and elasticity are often used. In this work parameters affecting the monolayer flat sheet extrusion of foams having variable densities (from about 1.2 to 0.2 g/cc) are presented. Unmodified and chemically modified resins with different melt viscoelastic properties are used. The effects of variables such as type and concentration of atmospheric gases, resin rheology and choice of process conditions are related to product characteristics including density, crystallinity and thermoformability.
Michel Cassart, Etienne de Wergifosse, Chuck Ensor, Ted Harris, May 1999
Clear, high styrenic elastomers (HSE) are commonly extruder blended with general purpose polystyrene (GPPS) to make sheet, which is thermoformed into articles for packaging and single service applications. The ability to adjust the blend parameters gives the processor an advantage over other clear polymers in meeting customer cost and performance demands. Transparency and impact resistance of such blends are affected by the HSE and GPPS selection, and the blend ratio. This paper discusses the influence of these parameters, with emphasis on GPPS selection.
Controlled synthesis of a new thermoplastic elastomer (TPE), poly(isobutylene-g-styrene) (PIB-g-PSt) was achieved by quasiliving atom transfer radical polymerization (ATRP). A new commercially available butyl rubber containing bromobenzyl moieties was used as macroinitiator for ATRP of styrene catalyzed by CuBr/2,2'-bipyridine complex. Both bulk and solution polymerization resulted in well-defined graft copolymers as indicated by analyses with 1H NMR and GPC. Phase separated morphology in these graft copolymers was found by DSC. Stress-strain analyses indicate high elongation and tensile strength for PIB-g-PSt grafts with certain composition. This new grafting process and the resulting TPE is candidate for several useful applications.
Thermal residual stresses in freely quenched semi-crystalline polymer slabs were calculated based upon the modifications of the Indenbom theory for inorganic glasses and linear viscoelasticity. These modifications were introduced to include the influences of crystallization on the shear relaxation modulus of the polymer during free quenching. The non-isothermal crystallization kinetic model due to Nakamura et al. was employed to calculate the variations of crystallinity. In the case of the Indenbom theory, a polymer during crystallization due to quenching was assumed to undergo an abrupt transition from an ideal plastic state to an elastic state upon the completion of crystallization. In the case of linear viscoelasticity, the Morland-Lee constitutive equation was utilized with the effect of crystallization on the time-temperature dependent shear modulus taken into account. The Spencer-Gilmore equation of state was employed to model the specific volume changes during crystallization, and used to determine the local thermal loading that results in the thermal stresses. Based on the above theoretical work, numerical simulations of development of thermal stresses in the symmetrically-cooled slabs of isotactic polypropylenes (i-PP) under various cooling conditions were performed. The predicted thermal stresses in the slabs were then compared with the measurements.
Paulo Henrique Pierin Macaúbas, Nicole Raymonde Demarquette, May 1999
Blends of polypropylene and polystyrene compatibilized with styrene-butadiene-styrene (SBS) and styrene-ethylene/butylene-styrene (SEBS) copolymers were studied. The morphology was studied by Scanning Electron Microscopy. Emulsion curves relating the average radius of the dispersed phase to the concentration of compatibilizer added to the blend were obtained. The rheological behavior of the blends was studied by small amplitude oscillatory shear, and correlated to the morphological observations. The interfacial tension between the components of the blends was evaluated from the rheological data.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.