SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Modeling Extrusion Processability for Materials with Various Molecular Parameters
Dario Nichetti, Ica Manas-Zloczower, May 1999

A simple superposition model was used to define the relationship between molecular weight distribution and shear viscosity for linear polymeric systems. The model was used to simulate melt extrusion in a single screw extruder with an annular die attached (3D isothermal flow simulations). The influence of material parameters (molecular weight and polydispersity) on the system operating point, power consumption and residence time distribution was analyzed. The model was used to develop windows of processing conditions for resins of different material properties. The effect of blending homologous polymers on material processability was also analyzed.

Advances in Polyolefin Stabilization
R.E. King III, May 1999

The worldwide arena of polyolefins is in a state of [r]evolution regarding the development of catalysts, polymerization processes, and olefin polymer compositions. Accordingly, the polymer producers, as well as the manufacturers of downstream products, are interested in new developments in stabilization technology that may help to maintain and even improve" the physical and aesthetic properties of their new products. Representative examples of "improvements" might include: better maintenance of melt flow rates lower initial color and better color maintenance enhanced long term thermal and light stability inhibition of gas fade discoloration enhanced additive compatibility higher clarity resistance to interactions with other additives reduced taste and odor and the suppression of visual imperfections (gels). The track record of traditional stabilization systems to fulfill the requirements of polyolefins is well known. Nevertheless intense investigations have been underway over the last few years to develop new stabilizer products based on chemistries that deliver recognizable improvements regarding the key measures described above. Most often this requires the discovery and development of new product chemistries. However there are other approaches which involve clever ways to use chemistries that have been knownbut perhaps underutilized. The impact of these new stabilization chemistries has been examinednot necessarily to simply displace existing stabilizers but also to differentiate and develop new markets and opportunities. Traditional "phenol based" as well as alternative "phenol free" stabilization concepts have been explored in new applications and the results were found to be quite promising. The performance of these new stabilization concepts and their applicability to new markets and opportunities will be discussed."

Advances in Polyolefin Stabilization
R.E. King III, May 1999

The worldwide arena of polyolefins is in a state of [r]evolution regarding the development of catalysts, polymerization processes, and olefin polymer compositions. Accordingly, the polymer producers, as well as the manufacturers of downstream products, are interested in new developments in stabilization technology that may help to maintain and even improve" the physical and aesthetic properties of their new products. Representative examples of "improvements" might include: better maintenance of melt flow rates lower initial color and better color maintenance enhanced long term thermal and light stability inhibition of gas fade discoloration enhanced additive compatibility higher clarity resistance to interactions with other additives reduced taste and odorand the suppression of visual imperfections (gels). The track record of traditional stabilization systems to fulfill the requirements of polyolefins is well known. Nevertheless intense investigations have been underway over the last few years to develop new stabilizer products based on chemistries that deliver recognizable improvements regarding the key measures described above. Most often this requires the discovery and development of new product chemistries. Howeverthere are other approaches which involve clever ways to use chemistries that have been known but perhaps underutilized. The impact of these new stabilization chemistries has been examined not necessarily to simply displace existing stabilizers but also to differentiate and develop new markets and opportunities. Traditional "phenol based" as well as alternative "phenol free" stabilization concepts have been explored in new applications and the results were found to be quite promising. The performance of these new stabilization concepts and their applicability to new markets and opportunities will be discussed."

Considerations in the Computer Aided Engineering of Pallets
S.I. Krishnamachari, May 1999

Plastic pallets and containers are used increasingly for storing, moving and warehousing various industrial and consumer products, thanks mainly to its several benefits besides environmental consciousness. The conventional wooden pallets are limited in their load capacity, useful life, cleanability, and above all, imaginative product-specific design. Contrarily, the structural foam molded plastic pallet, meets the demands heavy payloads, dynamic and impact loads, hostile weather conditions, size limitations, process effects, strength and stiffness requirements. Plastic pallets are used for up to 30000 lbs carrying capacity. Beyond their passive appearance, the plastic pallets are a product of engineering optimization encompassing materials, technology, design, stress analysis, and several end-use specific constraints. This paper is a review of the various considerations involved in the computer aided engineering of pallets as a product class.

On-Line Monitoring of Polymer Orientation during Injection Molding
Russell Edwards, Charles L. Thomas, Anthony J. Bur, May 1999

A non-invasive, on-line technique for monitoring the orientation of polymer in the mold cavity during injection molding is demonstrated. The propagation velocity of an ultrasonic shear wave can be used to detect anisotropic behavior in the mechanical properties of a solid. Thus, an ultrasonic shear transducer embedded in an injection mold produces a signal that is sensitive to polymer orientation. The technique is shown to be quite sensitive for semicrystalline polymers, but much less effective for amorphous polymers. Sensor results are compared to mechanical tests performed on plastic specimens.

Nylon 6,6 Glass Reinforced Composite Material for Automotive Air Intake Manifold Application
Boney A. Mathew, Allison Hardiman, Christopher A. Coco, May 1999

There are many advantages to air intake manifolds molded from Nylon 6,6 Glass reinforced composite material versus a pressure-cast aluminum manifold. Weight is significantly lowered and production costs generally are reduced. Performance improves with the precise control of the interior surface finish and reduced air induction temperatures. The Nylon 6,6 Glass reinforced composite material can be molded into intricate shapes by injection molding or lost-core process with reduced machining operations as well as Nylon 6,6 material is easily recycled. Production costs will continue to decrease as optimization of material, process and part integration increases. This study evaluates Nylon 6,6 Glass reinforced composite material in terms of the intake manifolds material key requirements such as thermal, heat aging, fatigue, impact, creep, stress and chemical resistance including multi fuels. This study would assist engineers in designing intake manifolds using Nylon 6,6 Glass reinforced composite material.

India's Emerging Automotive Industry
Beverley Ann Angott, Boney A. Mathew, May 1999

India is the world's largest democracy with a population of approximately 940 million people of which 250 million speak English. The country has a large technically trained work force, a middle class that exceeds the total population of the United States and twenty-three cities with a population of more than one million people. As a result, India has emerged as the 11th largest industrialized country in the world with the 10th largest Gross Domestic Product. According to the World Bank projections of the 15 largest economies (GDP Index) in 2020, they project India as number four behind China, U.S.A. and Japan (see Figure 1). In 1991 as the Indian government began to implement it's comprehensive reform program by liberalizing foreign investment policies, the country began to see a large influx of direct foreign investment. Consequently, India has become one of the prime candidates for foreign investment and joint ventures in the automotive industry. The industry reached a record $5.5 billion in 1995. The annual growth for passengers cars and utility vehicles this coming year is expected to be approximately ten percent while the commercial truck market is expected to increase at a rate of nine percent. There are problems within the Indian automotive industry caused by the recently announced Budget '98. Budget '98 has temporarily killed the initiatives to innovate, removed the incentives to modernize and destroyed the motivation to become and remain competitive in cost, quality, reliability and performance. Its implications and effects are to provide protection to the outdated models, sustain the manufacturing technologies that should be discarded and supports managements who refuse to change with the times. Foreign investment has had a direct impact on the $2.5 billion dollar automotive components industry as well. In the coming year industry analysts expect over $380 million to be invested in the components sector.

Three-Dimensional Finite Element Analysis of a Total Knee Prosthesis
Raj Basu, Boney Mathew, May 1999

A common problem with knee prostheses is wear failure of the polyethylene tibial plateau. The objective of this study was to compute the stresses generated in the polyethylene, and to determine how the stresses varied with changes in the minimum polyethylene thickness and the joint load. High stresses generated in the polyethylene lead to failure by wear. A three-dimensional finite element model of a metal-backed polyethylene tibial component with a conforming femoral component was generated. Nonlinear GAP elements were used to define the contact between the articulating femoral and tibial surfaces. Four load cases were considered. Two cases simulated level walking and two simulated stair climbing. For each activity, one load case considered the joint load as being equally shared between the two condyles, while the other case assumed that the joint load was acting only on one condyle. Six different model cases were considered each having a different minimum polyethylene thickness (tmin). Each model case was analyzed for each of the four load cases. The maximum Von Mises stress exceeded the yield strength of polyethylene for all thicknesses for the extreme load case of stair climbing. For tmin = 8 mm, the maximum Von Mises stress was less than the yield strength for all the other load cases. The maximum shear stress was less than the failure value for all cases. The optimum minimum polyethylene thickness for the tibial component of a knee prosthesis was concluded as 8 mm. With this thickness, the polyethylene would not yield during normal level walking and during stair climbing, yielding and subsequent wear of the polyethylene would be reduced. For a minimum thickness greater than 8 mm, the undesirable effect associated with over-resection of bone become dominant.

A New Route for Spinning Inherently Conductive Polyaniline Fibres
S.J. Pomfret, P.N. Adams, N.P. Comforta, A.P. Monkman, May 1999

We have developed a new acid-solution processing route for the conjugated polymer, polyaniline (PANi) [1]. This new processing route has allowed us to demonstrate wet-spinning of inherently conductive PANi fibres in a one step process. The fibres have been spun into various coagulation solvents. 'As spun' fibres have Young's moduli of 40 - 60 MPa, ultimate tensile strengths (UTS) of 20 - 60 MPa and electrical conductivites of 70 - 150 Scm-1. These fibres draw at room temperature, to an extension of ~500 %, with a concomitant increase in conductivity of up to a maximum of 1950 Scm-1. It is also possible to draw fibres at elevated temperatures, then anneal them to give fibres with Young's modulus of 2 GPa and UTS 97 MPa whilst retaining conductivities of ~ 600 Scm-1.

Injection Molding of Sub-µm Grating Optical Elements
R. Wimberger-Friedl, May 1999

The potential applications of micro-structured optical components are numerous. The mass replication of (sub-) micron structures remains a challenge, however. For an application in a CD light path a ?/4-grating element has been designed and successfully produced that requires the replication of structures 200 nm wide and 1600 nm deep (aspect ratio of 8). A big part of the challenge is the production of mold inserts containing such structures in a suitable mold material in addition to finding the process conditions in order to successfully replicate and release such structures with a conventional thermoplastic molding equipment. It is shown that such structures can indeed be molded with Polycarbonate in a conventional molding operation. A more stable process, however, is obtained by splitting the functions over two surfaces in this way reducing the aspect ratio to 4

Deformation Mechanism of Thermoplastic Vulcanisates Investigated by Combined FTIR and Stress-Strain Measurements
Maria Soliman, Menno van Dijk, Martin van Es, Vladimir Shulmeister, May 1999

Thermoplastic vulcanisates are blends of a thermoplastic matrix with a crosslinked rubber. The rubber is dynamically crosslinked during blending. Due to this procedure it is possible to get phase inversion and disperse a large amount (up to 80%) of rubber into a thermoplastic matrix. These materials, which are in our case based on polypropylene (PP) and EPDM, show a high elasticity upon tension and pressure. This, despite the fact, that the matrix consists of polypropylene, which should be deformed plastically. To understand this phenomenon we investigated these materials with time-resolved infrared spectroscopy during tensile tests. It could be shown that the amorphous and crystalline EPDM regions show orientation directly proportional to the applied strain, whereas the crystalline PP shows a very small orientation up to 300% macroscopic strain. This fact can only be explained by a model which assumes a very inhomogenous deformation of the PP matrix and a good adhesion between matrix and dispersed phase. Besides these experiments finite element calculations were done to understand the influence of the morphology of the dispersed phase and the constitutive behaviour of the matrix on the recoverability of TPVs.

Diffusion Coefficients of Single Component Linear n-Alkanes
Rahmi Ozisik, Wayne L. Mattice, May 1999

A high coordination lattice is used in the simulations of various n-alkanes above their melt temperatures. All n-alkanes used are linear, single component, single chain systems, ranging from C12H26 to C316H634. Metropolis Monte Carlo algorithm is adopted for the moves on the high coordination lattice. All moves are possible as long as the bond length on the lattice is not altered. Short range interactions are calculated with an extended rotational isomeric state (RIS) formalism and long range interactions are calculated with a spherically isotropic Lennard-Jones (LJ) potential both of which satisfy the specifics of the coarse grained lattice.

Performance of Di-N-Hexyl Phthalate in Flexible Vinyl Formulations
Richard.R. Kozlowski, Thomas K. Gallagher, May 1999

Low molecular weight esters have been available to the PVC compounder for many years. They have found a significant niche in the performance vs. permanence compromise as a compound ingredient that provides manufacturing efficiency or some special property with adequate permanence for many vinyl applications. In many respects, low molecular weight esters are the processing aids of the plasticizer family. This group of plasticizer may be said to include C4 to C7 dialkyl phthalates, the benzyl phthalates and the benzoic acid esters. This paper will introduce and compare di-normal hexyl phthalate (DNHP) to other phthalates against which it will directly compete.

Dimensional Changes of PPS in Environmental Testing
Lee Hornberger, Rick D’Onofrio, Scott Kopacek, May 1999

The actuator arms in some hard drives were found to distort after being subjected to an 80°C environmental test. This distortion was believed to be due to a relaxation of thermal residual stresses in the glass filled polyphenylene sulfide component of the arm due to the molding process. Changes were made in the molding process and this diminished the problem but did not eliminate it. Differential scanning calorimetry test on the plastic revealed that physical aging of the PPS was occurring during the 80°C environmental test and the changes in the molding process would have little impact on the motion which resulted in this process.

Development of Filling Imbalances in Hot Runner Molds
Christopher W. White, May 1999

When manufacturing plastic parts from multi-cavity tools by means of injection molding, it is common to use naturally balanced runner systems to deliver the melt to each cavity with identical flow conditions. However, a common occurrence associated with naturally balanced runner systems is that the parts molded in the inner cavities, closest to the sprue, are heavier and larger than the outside parts. Recent studies suggest the inconsistencies be due to unsymmetrical shear distributions created as the melt splits to flow through the various branches of a runner system (1-2). This paper shows the mold-filling imbalances experienced with geometrically balanced runner systems of multi-cavity hot runner molds, through computational fluid dynamics analyses.

The Effect of Phenolic Regrind on the Mechanical Properties of HDPE
Liz Ohlsson, May 1999

The possibility for recycling cured phenolic material was evaluated by testing mechanical properties of High-Density Polyethylene (HDPE) containing phenolic regrind material. The mechanical properties evaluated were: modulus of elasticity, percent elongation, tensile strength, and impact strength. Four different levels of phenolic regrind were used for evaluation with four different levels(4.76, 9.09, 16.7%) of phenolic regrind used in the comparison. The results demonstrated that with higher levels of phenolic regrind in the base HDPE material, certain mechanical properties degraded, with increased brittleness the most apparent effect.

A Study on the Feasibility of Using Granulated Polyvinyl Chloride Coated Fiberglass Screen as a Filler and/or Reinforcement in Specimens Molded from Recycled High Density Polyethylene, Polypropylene,
John Raybuck, Daniel Heuer, May 1999

This paper will analyze the feasibility of using granulated polyvinyl chloride-coated fiberglass screen as a filler and/or reinforcement in injection molded plastic products. The screen, composed of the trim cuts from large rolls and defective sections, will be granulated and blended, in different weight ratios, with recycled high-density polyethylene and polypropylene. The resulting composites will be injection molded to produce ASTM D638 testing specimens. Also, one population of specimens will be produced from a composite of the granulated screen and commingled post-consumer recyclate. The process- ability of the composites and several mechanical properties will be observed and recorded. Statistical methods will be applied to the data, in order to predict the effect of adding different levels of filler/reinforcement on the mechanical properties of the composites.

The Effect of Polyvinyl Chloride and Polystyrene on the Mechanical Properties of Plastic Parts Produced with Commingled Post-Consumer Recyclate
John Raybuck, Daniel Heuer, May 1999

One way to avoid the separation of post-consumer plastic waste is to utilize commingled recyclate in the design of plastic products. However, the combination of many plastic resins can sometimes yield poor mechanical properties, due to the debonding of the different resins. It is important to understand if one or more resins in the commingled material will cause greater debonding than the other resins. This study examines the debonding in low-density polyethylene specimens filled with increasing levels of commingled post-consumer recyclate that does and does not contain polyvinyl chloride and polystyrene. The debonding in the specimens will be characterized through tensile testing.

Processability and Trends in the Mechanical Properties of Low Density Polyethylene Parts Produced Using Increasing Levels of Commingled Recyclate as a Filler
Daniel Heuer, May 1999

As the plastics industry is increasingly confronted with environmental demands and regulations, the need for successful and reliable recycling programs is greater than ever. One of the keys to the success of these recycling programs and to the success of recycled resins is identifying feasible end uses for commingled recycled polymers. One possibility is for plastics manufacturers to specify commingled recycled resins, as a filler, in their products. This can provide savings for the manufacturer, while helping to promote plastics recycling. When specifying the level of commingled recycled resin to be used in a product, the designer must consider the net effect it will have on the processability and the mechanical properties of the part. This study will examine and attempt to predict the net effect of increasing the level of commingled post-consumer and post-industrial recyclate, used as a filler, in the production of low-density polyethylene parts.

Interfacial Interactions in Carbon Fiber Reinforced Epoxy Composites
Béla Pukánszky, János Gulyás, May 1999

The effect of surface coverage and the type of coupling agent were studied in carbon fiber reinforced epoxy microcomposites. The surface of PAN based, electrochemically oxidized carbon fibers was treated with solutions of an epoxy- (EPS) and an aminosilane (AMS), 4,4'-diphenylmethane diisocyanate (MDI) and triglycidyl isocyanurate (TGIC). The amount of coupling agent bonded chemically to the surface of the fiber was determined by analytical methods. Single fiber composites were prepared from treated and non-treated fibers. The fragmentation method was used to determine the interfacial shear strength (IFSS) characterizing fiber/matrix adhesion. The amount of coupling agent bonded to the fiber surface was related to IFSS. A close correlation was found between the bonded coupling agent and adhesion in the case of the epoxysilane and TGIC, but such a correlation could not be found for the aminosilane and MDI.







SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use

Links

Locations

SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net