The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Peng Liu, Michael Mullins, Tim Bremner, Hung-Jue Sue, May 2016
The objective of this work is to investigate the degradation mechanisms and property changes of a blend of poly (etheretherketone) (PEEK) with poly [2, 2’-(m-phenylene-5, 5’-bibenzimidazole] (PBI) upon exposure to water at temperatures up to 288 °C. The molecular scale damping behavior of PEEK/PBI blend was probed using dynamic mechanical analysis (DMA). Atomic Force Microscopy based nanomechanical mapping has been used to assess the moduli profile near the interface of PEEK and PBI with various environmental exposure histories. The results demonstrate that the incorporation of water influences the compatibility behavior of PEEK and PBI through enhanced interfacial adhesion. Fracture toughness of the PEEK/PBI blend is significantly reduced by hot water exposure at 288 ºC.
Weeradech Kiratitanavit, Zhiyu Xia, Ankita Singh, Ravi Mosurkal, Ramaswamy Nagarajan, May 2016
Intumescent and char forming additives are typically blended into certain types of commercial plastics to impart resistance to fire propagation. Intumescent compounds such as ammonium polyphosphate/ melamine/ pentaerythritol, silica gel/potassium carbonate are already used as flame retardant (FR) additives. In this work, a naturally occurring polyphenol, namely tannic acid, is explored as an intumescent and char forming additive for polyamide - Nylon 6. The tannic acid was meltblended into Nylon 6 and the compounded plastic was evaluated for thermal stability, total heat release (THR) and heat release capacity (HRC). It was found that HRC and THR of nylon blended with tannic acid decreased by 50% and 20% respectively.
Yoshihiro Mizutani, Yusaku Mochizuki, Masayuki Okoshi, Hiroyuki Hamada, May 2016
Corrugated cardboards have truss structure, so these have advantageous in terms of specific strength, workability, price and recycling efficiency. Because of these properties, corrugated cardboards are used as not only packing materials but also furniture etc. When a disaster caused in Japan, refugees sleep directory on the floor with a blanket. It caused the second healthy damage like the economy class syndrome. For prevent refugees from its damage, beds made from corrugated cardboard has been used instead of cots in Japanese shelters. We need to give flameretardancy to the cardboard bed for enhancing safety. In this research, flameretardancy of corrugated cardboards is aimed to using Poly-vinyl alcohol (PVA). PVA is useful for the coat of the cardboard. The coating PVA on the cardboard is possible to be recyclable, because PVA has water solubility. We used 2 kinds of flameretardant in this time. In the result of combustion test, the Halogen, Phosphorous and Nitrogen based compound show great flameretardancy for PVA.
Yusaku Mochizuki, Yoshihiro Mizutani, Masayuki Okoshi, Hiroyuki Hamada, May 2016
Recently corrugated cardboard is utilized for not only packing materials but also furniture and beds at shelters in Japan. The reason why the cardboard has the characteristics of lightness, high strength, cheapness and recycle ability. Therefore, there is the strong needs to add flameretardancy for cardboard beds in medical facilities for prevention of second disaster. The purpose on this study is to add flameretardancy to the cardboards with keeping the recycle ability. In this paper, the cardboard of combusting behavior was measured by using a calorimeter under the UL-94 standard. So far we have used 6 kinds of flameretardant include 3 kinds of commercial flameretardant. As a result ammonium sulfate has given superior flameretardancy to cardboards. However we considered that it has no practical use, because flameretardancy of cardboards must be safety from chemical toxicity. Therefore we selected 2 kinds of flameretardant. As a result a flameretardant which contain phosphorus and nitrogen gave great flameretardancy to cardboards with small quantity.
Christoph Burgstaller, Bernhard Riedl, Wolfgang Stadlbauer, May 2016
The aim of this work was to investigate the effects of the composition on the properties of LDPE-PA6 blends with an emphasis on the addition of EVA, because this material is often used as interlayer in packaging films. Furthermore, also the effects of additional compatibilization on the blend properties should be investigated. We found, that the addition of EVA alone shows some compatibilizing effects in blend properties, like impact strength and viscosity. Further improvements can be gained by adding prefabricated additives, like maleic anhydride grafted polyethylene and ethylene vinyl acetate, while the in situ production of such additive shows some reduced effects, likely due to some reduced accessibility of the EVA component for the in-situ grafting. Nevertheless all the investigated approaches show some effectiveness in compatibilisation, which will help to reuse such materials in other applications.
Synthetic polymers derived from crude oil are widely used across various industries. However, increased environmental regulations tackling climate change have spurred interest in development of bio-sourced polymers. While promoting the cause of sustainability, biopolymers also possess inferior mechanical properties, limiting their widespread use. A plausible and cost-effective way of enhancing the properties of pure biopolymers is to blend them with other polymers and/or reinforce them with stiff fibers. This study investigates the thermophysical properties of bio-based thermoset blends of epoxidized pine oil (EPO) and acrylated epoxidized soybean oil (AESO). The blends were prepared via casting in five different ratios by volume (EPO/AESO): 100/0, 90/10, 80/20, 70/30, and 0/100. Mechanical properties of blends were studied via tensile testing and scanning electron microscopy, while chemical properties were analyzed using thermo-gravimetric analysis.
Splay is a primary source of fallout when injection molding parts using polycarbonate. Elimination of splay is a difficult proposition, but maintaining acceptable baseline fallout across production is crucial to keeping waste under control and shipment of defects to customer to a minimum. Overall splay was reduced from 1.8 to 0.9 percent on parts running in excess of 1.4 million annually. The analysis provided in this paper shows how the extent of splay waste was identified, root cause analysis conducted, corrective action implemented, and results verified for one source of polycarbonate splay in a production environment.
Among the many environmental problems which mankind faces in the XXI century is the problem of environmental sustainability and management of the tremendous amount of generated polymer waste. Among various polymer wastes, management of crosslinked plastics is a major environmental problem requiring a solution. This study was specifically directed toward the creation of a new, environmentally friendly and science-based technology for the recycling of crosslinked plastics. Uncrosslinked thermoplastics can be easily reprocessed and reused. However, managing crosslinked plastics is a very challenging problem. This is due to the presence of a three-dimensional network, which prevents flow and shaping of crosslinked plastics upon heating and shearing. Our laboratory developed ultrasonic decrosslinking technology for recycling of the crosslinked high density polyethylene (XHDPE) of different levels of crosslink densities and crosslinked LDPE (XLDPE). This is done by using ultrasonically aided single-screw extruder (SSE) operating at a frequency of 20 kHz and twinscrew extruder (TSE) operating at a frequency of 40 kHz at different levels of ultrasonic energy [1]. The experimental studies on the ultrasonic decrosslinking of XHDPE and XLDPE have shown that the ultrasonic extrusion was capable to preferentially break crosslinks rather than main chains in XHDPE. Significant reduction of the extruder torque, die and barrel pressures with the ultrasonic amplitude was observed during decrosslinking of XHDPE and XLDPE. The specific ultrasonic energy decreased with the flow rate and increased with the ultrasonic amplitude, while die pressure increased with the flow rate and decreased with the ultrasonic amplitude [2-5]. Accordingly, application of ultrasonic treatment during extrusion enabled an increase of productivity.
Thin film packaging is used for a wide range of products including packaging of food, medical tools, electronics, and toys. Each of these applications requires a different type of film, from thin and brittle, to composite film including a foil layer, to biodegradable films. These films can be adhesively bonded, heat sealed, impulse welded, and increasingly, ultrasonically welded. Ultrasonic welding offers many benefits to thin film sealing such as faster cycle times, reduction in film usage due to narrower bond widths, elimination of adhesive layers, improved hermeticity for increased shelf life, and less sensitivity to contaminants in the seal area. However, tool design can have a significant effect on weld strength. Optimum tool design depends not just on the thickness of the material to be welded, but also the type of polymer to be joined, and seal requirements (such as hermeticity and peel strength). In this study, we seek to provide starting guidelines with the goal of lowering the cost and duration of the tooling development process by investigating the achievable peel strength of a wide variety of film types with twenty-five horn and anvil design combinations.
Fakhruddin Patwary, Nadejda Matsko, Vikas Mittal, April 2016
Soil burial tests, conducted under natural conditions, were used to investigate the biodegradability of bio-nanocomposites containing silica, silicate, and graphene reinforcements.
Using an industrial waste as an inorganic filler in plastic/wood composites improves the fire and mechanical properties of the material, as well as reducing its financial and environmental cost.
Grafting polystyrene onto wood cell walls improves the interfacial compatibility between polymer and wood, and thus gives rise to better mechanical and hydrophobic properties.
Vimal Katiyar , Amit Kumar, Umesh Bhardwaj, Prodyut Dhar, February 2016
Cellulose nanocrystals are used to fabricate novel biodegradable nanocomposites that exhibit reduced oxygen permeability, as well as improved tensile and rheological characteristics.
Umit Tayfun , Erdal Bayramli, Mehmet Dogan, February 2016
An isocyanate surface treatment of flax fibers produces improved interfacial interactions of the fibers with the polymer matrix, and thus stronger eco-composites.
Emilia Garofalo , Loredana Incarnato, Luciano Di Maio, Paola Scarfato, February 2016
An in-depth study of polylactide nanocomposite molecular characteristics demonstrates that selecting appropriate organoclays for each polylactide grade is a key issue.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.