The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Polypropylene carbonate (PPC) is an amorphous polymer made by alternating copolymerization of carbon dioxide and propylene oxide. SK Energy developed its own proprietary technology with a highly active catalyst for this polymerization and has begun to produce PPC in its continuous process type pilot plant since late 2008 with a trade name GreenPolTM. In this paper, we are describing the typical properties of PPC such as general physical properties, barrier properties, thermal and UV stability, and smoke density along with some rheological properties.
P.V. Vijay, GangaRao Hota, Siddalingesh Kalligudd, May 2011
Use of recycled thermoplastic polymer composites for manufacturing and evaluation of structural products as a sustainable solution is discussed in this paper. Durability (aging) evaluations of those polymers have also been carried out to predict their service life. Specifically, ABS polymers were reinforced with 4%, 7% and 12% fiber volume fractions of bi-directional glass fabric (fabric density: 407 gm/sq. mtr. or 12 oz per sq. yard) and were evaluated. Research results indicate the significant potential of recycled polymer composites for different applications with the use of continuous glass fabrics.
Ethylene ionomers, such as Surlyn from DuPont, have long been used as packaging sealants because of their good mechanical properties and formability combined with excellent seal strength over a wide sealing temperature range, seal integrity in the presence of contamination, and hot tack. Ionomers can be modified with biosourced additives, such as fatty acids to modify their mechanical and barrier properties. In this paper we discuss blending these recently developed ionomers with commercially available ethylene copolymers to achieve films containing 20% -40% renewable content having a good balance of sealant and mechanical properties.
Alex Kugel, Jie He, James Bahr, Mohammed Nasrullah, Bret Chisholm, May 2011
A series of poly(1,9-nonamethylene adipamide-co-1,9-nonamethylene terephthalamide) copolymers were produced using melt polymerization and the thermal properties and crystal structure characterized. The results obtained confirmed that the copolymers exhibit isomorphism. As expected, glass transition temperature and the apparent melting temperature increased with increasing terephthalmide content. Using the difference in the apparent melting temperature to the crystallization temperature as a measure of relative crystallization rate, it was observed that crystallization rate decreased as the terephthalamide content of the copolymer was increased from 0 to 50 mole percent but then sharply increased when increased beyond 50 mole percent.
Recycled poly(ethylene terephthalate) (RPET) chain extender (CE) and nanoclay were prepared via conventional and microcellular injection molding processes. The effects of CE loading levels and the simultaneous addition of nanoclay on the thermal and mechanical properties and cell morphology of the microcellular components were noted. The addition of 1.3 wt% CE enhanced the tensile properties and viscosity of RPET. The higher amount of CE (at 3 wt%) enhanced the viscosity, but margin of improvement in mechanical properties diminished. While the solid RPET and CE blends were fairly ductile, the samples with nanoclay and all microcellular specimens showed brittle fractural behavior.
Recycling of unfilled and reinforced poly (phenylene ether) (PPE) based thermoplastic elastomers (TPEs) was studied in detail. Improvement in mechanical properties upon recycling of the unfilled quaternary blend comprising of styrene-ethylene-butyllene-styrene (SEBS)/ethylene vinyl acetate (EVA)/PPE-PS (polystyrene) was correlated with the formation of crosslinked network. PPE based TPEs have been reinforced by incorporating nanofillers and with the formation of crosslinkinked TPEs or thermoplastic vulcanizates (TPVs). This study also provided an in-depth conceptual understanding of the recycle behavior PPE based TPE behavior upon reinforcement with silica nanoparticles and silica sol-gel precursors.
Environmental stress crack resistance (ESCR) is a critical mechanical property for polyethylene in injection and rotational molding applications. Based on a very well characterized matrix of materials with widely varying densities and melt index, we have looked at broad orthogonal composition distribution (BOCD) as a means of improving ESCR without the processability and stiffness debits. Through blending high melt index, high density components with low density, low melt index components to a target MI/ density, ESCR improvements of up to two orders of magnitude are evident over their single component counterparts.
Liam Driscoll, Joshua Anthony, Akshay Agarwal, May 2011
The testing of plastics has become decidedly different and as technology improves, it is necessary to evaluate the accuracy of results based on testing methods, particularly when functional durability is critical. The research discussed in this paper focuses on the effect of changing test parameters in relation to the falling dart impact test, more commonly referred to as the Gardner impact test (ASTM D5420). The drop weight protocol accommodates real geometries and reflects environmental conditions including temperature and percent relative humidity, as well as end-use impacting speeds but is affected by tup weight, probe diameter, and support ring.
Christian Hopmann, Walter Michaeli, Andre Potthoff, May 2011
Environmental stress cracking is the most common failure reason of plastic parts. The influence of the processing conditions e.g. of the injection molding process on the environmental stress cracking resistance has not been investigated yet. Therefore several tests are carried out at the IKV. Test specimens are injection molded with different parameters for melt temperature, mold temperature and injection rate. These parameter variations cause variable inner properties of the molded parts. The environmental stress cracking resistance of specimens with different inner properties differs in a wide range. The results are discussed in detail.
Umar Mohammad, Leigh Mulvaney-Johnson, Russell Speight, Phil Coates, May 2011
The injection moulding process has a complicated set of process parameters and is subject to variations over time resulting from material, environmental and machine component changes. In order to maintain product quality it has been proven that monitoring the process signals is beneficial towards identifying possible changes in the moulded product. Here, the process signals (melt pressure, temperature and screw displacement) are utilised along with material pressure-specific volume-temperature (pvT) characteristics to estimate the moulded product mass. The successful validation of this method presented over a range of processing conditions.
Polylactide, polyester derived from renewable resources, can be synthesized using either L-lactide or D-lactide. A unique crystallization behavior of poly(L-lactide) (PLLA)/poly(D-lactide) (PDLA) stereocomplex(SC) was observed when a PLLA/PDLA blend was subjected to the specific melting conditions. Therefore, we tried to blend PLLA and PDLA at overall compositions to form PLA stereocomplexes. Moreover, impact modifier was added to enhance the mechanical properties such as impact strength. The presence of the SC in the PLLA matrix was verified by differential scanning calorimetry (DSC). Thermal and mechanical property of stereocomplexes were investigated by DSC, HDT, Izod impact tester, UTM.
Thermoformable Fluorex Bright Film was developed to emulate the appearance of plated chrome. However, unlike plated chrome, Bright Film is flexible and thermoformable and can be applied to TPO. The film technology is environmentally friendly and cost-effective, and it has practical applications in various manufacturing processes, such as insert injection molding, thick-sheet thermoforming and extrusion lamination processes. Backed by successful weathering and other testing results, Bright Film has been accepted by the marketplace to accommodate or replace chrome plating as a decorative material for both interior and exterior finishes in the automotive and other industries.
Polypropylene blends with thermoplastic starch (TPS) have demonstrated significant potential in the bioplastics field. The polymers are improved by achieving higher biocontent and lower green house gas emissions. The TPS is finely dispersed by means of a tandem extruder with plasticizer, water, heat, and shear, and then melt blended with the polymer to produce a co-continuous morphology of TPS and polymer. TPS blends produced in this method lead to improved retention of physical properties over conventional methods. The TPS method is presented as well as morphology, GHG emissions, and properties.
Khozema Jafferji, Daniel Schmidt, Emmanuelle Reynaud, May 2011
In this study, a bio-based epoxy thermoset was made from highly functional epoxidized linseed oil (ELO) using a polyethyleneimine (PEI) crosslinking agent. Following optimization of cure conditions and the stoichiometric ratio of ELO to PEI, the compatibility of this system with several commercial montmorillonite and hydrotalcite layered nanofillers was studied. The hydrotalcites were observed to enhance the homogeneity of the ELO-PEI system, whereas the montmorillonites showed settling and produced inhomogeneous materials in all cases.
Hingbo Li, Nathalie Legros, Christian Belanger, May 2011
Triticale is being developed and aimed as an industrial crop and biorefinery feedstock for the Canadian manufacturing industry within the CTBI networking. In this paper the potential of triticale starch for the TPS/polymer blend fabrication was explored in terms of the starch morphology, crystallization structure, and the TPS (thermoplastic starch) rheology properties. The possibility of using triticale to make 100% biobased blown film was investigated using a small lab-scale film blown line. Film thickness of 25 um was obtained successfully for the triticale starch based PLA/TPS blends.
Ultrasonic cutting systems are employed with materials that are difficult to cut with standard mechanical systems. The cutting knife/edge typically vibrates at a frequency of 20-60 kHz, heating the substrate during the cutting and simultaneously sealing the cut edges. Polylactic acid (PLA), a biodegradable thermoplastic material derived from starch and sugar, is relatively brittle compared to polyethylene terephthalate (PET), which has similar mechanical properties. This brittleness is problematic during mechanical cutting, which produces micro-cracks that further embrittle the material.
The containers and closures market utilizes numerous decorating techniques on a variety of plastic and glass substrates. These decorating methods need to be functional as well as aesthetically pleasing. UV curable coatings can offer value to this market by providing high performance decorative coatings that are cost effective, easy to process and environmentally friendly. This paper will discuss the benefits of using UV curable coatings as an alternative to other ways of decorating containers, some challenges encountered in formulating coatings to meet all specifications of the containers and closures market, and typical performance and processing requirements.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.