The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
The effect of the degree of substitution (DS) of carboxymethylated starch (CMS) as green corrosion inhibitor of carbon steel on 200 mgL-1 NaCl solution was investigated. Physical/chemical structure of CMS was studied by Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (13C-NMR). DS of this bio-polymer was determined by back-titration. Its inhibitive properties were evaluated using polarization curves and electrochemical impedance spectroscopy. CMS acts as corrosion inhibitor and the protection level is highly dependent on the degree of substitution. The formation of a chelate between carboxylate groups and ferrous cations allows the inhibition mechanism of CMS to be explained.
Hyokap Kim , Juhee Shu , Ho-Jong Kang , Hansung Kim , Jinsik Cho , Yongwon Kim, May 2010
Triacetyl cellulose (TAC) film has been used as a protective film for the polyvinyl alcohol (PVA) based polarization film in liquid crystal display (LCD). Adhesion strength between TAC and PVA films by PVA type adhesive must be maintained sufficiently to keep the dimensional stability of polarized PVA film under severe environmental conditions, such as high temperatures and high humidity. In this study, the surface hydration of TAC film and adhesion process between TAC and PVA films were investigated. The surface hydration of TAC enhanced the adhesion strength between TAC and PVA films. Consequently, this provides better dimensional stability of polarized PVA film protected by TAC film. In addition to adhesion strength, appropriate draw ratio and the crosslinking in PVA film were also required for better dimensional stability in polarized PVA film.
John Flood, Donn Dubois, Carl Willis, Robert Bening, May 2010
Poly(lactic acid) (PLA) is one of the most favorable candidates to replace conventional packaging materials due to its biodegradability and sustainability. However, its high viscosity and density often poses a challenge to melt processing especially injection molding. In this study, PLA was injection molded and foamed by using supercritical N2. Injection molding parameters such as mold temperature and SCF content were varied in order to investigate their effects on foam cell size. The effects of nucleating agent on the foam structure and cell size distribution were also elucidated by image analysis. Impact and dynamic mechanical performance of the foams were also evaluated.
Recycling post-consumer PET bottles is an essential and practical solution to reduce the amount of waste discarded at the landfills. Several methods are
commonly used to recycle PET such as fiber making,
sheet extrusion and injection molding. However, PET
is known to exhibit low notched impact strength and
low heat distortion temperature. In this study, an
impact modifier was successfully used to enhance the
toughness of recycled RPET (RPET). Subsequently,
talc, which is typically used in polypropylene, was
introduced into RPET and its effectiveness as a
reinforcement was evaluated. It was noted that the
heat distortion temperature (HDT) of the composites
increased significantly with increasing talc content.
In 2005 Environmental Defense and DuPont entered into a partnership to develop a framework that seeks to identify and address potential environmental health and safety (EH&S) risks of nano-scale materials. The Nano Risk Framework was published to establish a systematic and disciplined process to identify and reduce potential risks during nanomaterial development and meet continued product stewardship commitments [1]. This paper describes an approach developed for and the application of the Framework to the processing of polymer nanocomposites at laboratory and semi-works scales. Carbon nanotubes were melt-blended into a polymer matrix with a batch mixer to improve mechanical and electrical properties.Nano-TiO2 nanocomposites were made on laboratoryand semi-works extruders. These case studies exemplify DuPontƒ??s approach to handling nanomaterials in the product research and evaluation phase of development.Utilization of the Framework enabled further refinement of internal EH&S management procedures and to identify questions to be answered for such applications before they move to commercialization.
Davide S.A. De Focatiis, C. Paul Buckley, Lian R. Hutchings, May 2010
The purpose of this work was to perform a comparative analysis of various candidate nitrile coated fabric materials supplied by potential vendors to be used as fuel storage tanks and compare the results to the currently fielded polyurethane storage tanks. Our strategy is to utilize advanced environmental ageing methods to simulate extended weathering conditions.
Our results demonstrate that the nitrile coated fabrics performed well in our evaluation. Their breaking strengths are about equal to the currently fielded urethanes and they performed comparably when subjected to environmental ageing conditions.
Bruce F. Taylor, Timothy W. Womer, Robert Kadykowski, Robert A. Sickles, Jr., Luke A. Miller, May 2010
Ethylene vinyl acetate (EVA) has been used as encapsulant for solar cell application. the curing degree needs to be controlled to optimize the property. The traditional way to characterize the gel content (crosslinking degree) is by extraction using organic solvent. This method is time consuming and environmental unfriendly due to the toxic solvent. One new way to characterize gel content is by DSC. From the exothermic residue crosslink peak the gel content can be determined. The study indicates excellent correlation between these two methods. Compared with extraction method, DSC is easier and more cost efficient.
Franco Guastaferro Preda , Delia de Jesús , Johan J. Sánchez, May 2010
For a group of 14 polyethylenes (PE) with different
densities (0.924 to 0.966 g/cm3) and melt flow index MFI
(0.38 to 42 dg/min) the Environmental Stress Cracking
Resistance (ESCR) of each PE was determined by the
typical method of bent strip or ESCR at constant strain.
The results were compared with those obtained by the
evaluations of ESCR by constant-tensile-load method. For
both methods the effects of the density and MFI on ESCR
were similar and in agreement with those reported in the
literature. However the failure time spread measured in
the ESCR at constant load is smaller although both
methods lead to high experimental errors attributed to
limitations or omissions in the experimental protocols
described in the standards used for these measurements.
Alan Stall , Thomas Hicks , Carl Frauenpreis , Vladimir Sinani , Tatyana Samoylova, May 2010
Nanoclay composites require inclusion of chemicals such
as surface coatings and compatibilizers to achieve
required physical performance. However these chemicals
are costly not environmentally friendly and their use
restricts the commercial applications. This research covers
the use of a new extensional flow mixer which can make
nanocomposites without chemical additives and give
comparable results to conventional technology which does
use these chemical additives. The significance is the
elimination of the need for the expensive additives and
creating a lower cost product that has food and
environmental acceptance.
Alan Stall , Thomas Hicks , Carl Frauenpreis , Vladimir Sinani , Tatyana Samoylova, May 2010
Nanoclay composites require inclusion of chemicals, such as surface coatings and compatibilizers to achieve required physical performance. However, these chemicals are costly, not environmentally friendly, and their use restricts the commercial applications. This research covers the use of a new extensional flow mixer which can make nanocomposites without chemical additives, and give comparable results to conventional technology which does use these chemical additives. The significance is the elimination of the need for the expensive additives, and creating a lower cost product that has food and environmental acceptance.
Michelle M. Mok, Jungki Kim, John M. Torkelson, May 2010
Extrusion foaming using supercritical carbon dioxide (CO2) is the most economic and environmentally benign process but it is difficult to control the foam density and maintain the thermal insulation performance. In this study, we added water as a co-blowing agent to better control foam density and introduced carbon nanoparticles/activated carbon (AC) to improve the thermal insulation performance of polystyrene (PS) foam. In order to understand this novel extrusion foaming process, the effects of various parameters such as particle style and content, extruder barrel and die temperatures on foam density, morphology and thermal insulation performance are investigated systematically.
Silica aerogels have attracted attention for many applications due to their unique properties such as low density (0.003g/cm), mesoporosity (pore size 2-50nm), high thermal insulation and high surface area (500-1200m2/g). However, their fragility and environmental sensitivity restricts the use of monolithic silica aerogel. In this paper, silica aerogel that is cross-linked with diisocyanate is introduced and the effects of polymer concentration on aerogel properties, especially mechanical strength are discussed. Fracture of silicaaerogel mainly occurs at the interface of secondary particles that are formed during aging. It is believed that if the surface of silica aerogel is covalently bonded to nanocast polymer coating, the interparticle necks become wider and can reinforce the structure of the aerogel.
Recent earth environmental concern requires easy
recycle material system and the use of biodegradable
polymer and natural fiber is noticed in composite
materials. To apply the natural fiber for the structural parts
the use as reinforcement of Sheet Molding Compound
(SMC) is desirable because it is expected that SMC can be
used in various fields in terms of high productivity and
dimensional stability.
Considering that fiber reinforced composite is used
for structural part the design of the strength is very
difficult because the failure mechanism is complicated
considerably. In this study SMC that reinforcement was
jute cloth was prepared. The low-cycle bending fatigue
test and the cross sectional observation of fracture part
were performed. As a result the brittle crack propagation
in the interface around the fiber bundle was seen in the
specimen of warp and weft direction and the phenomenon
such as brittle crack propagation was not confirmed in the
specimen of 45-degree direction.
Recent earth environmental concern requires easy recycle material system, and the use of biodegradable polymer and natural fiber is noticed in composite materials. To apply the natural fiber for the structural parts, the use as reinforcement of Sheet Molding Compound (SMC) is desirable because it is expected that SMC can be used in various fields in terms of high productivity and dimensional stability.Considering that fiber reinforced composite is used for structural part, the design of the strength is very difficult because the failure mechanism is complicated considerably. In this study, SMC that reinforcement was jute cloth was prepared. The low-cycle bending fatigue test and the cross sectional observation of fracture part were performed. As a result, the brittle crack propagation in the interface around the fiber bundle was seen in the specimen of warp and weft direction, and the phenomenon such as brittle crack propagation was not confirmed in the specimen of 45-degree direction.
Martin N. Bureau, Marion Maire, Gerardo Diaz-Quijada, Lucie Robitaille, Abdellah Ajji,
Yahye Merhi, May 2010
End of Life Vehicles (ELVs) are becoming a growing concern because of their impact on the environment. The automotive industries are facing worldwide pressure to help find environmentally friendly ways of disposing end of life vehicles. Though most of the metal parts from the ELVs are recycled however, plastic components from the shredder residue are complex to separate and they are being mostly dumped into the landfill. The main purpose of this paper is to present an alternate solution to this environmental issue by using bio-degradable plastic in the automotives. Experimental works have been done to check the change in mechanical properties of bio-degradable plastic for accelerated weathering test. The results resemble the impact of weather on bio-degradable plastic while using for automotives in typical Australian environment.
Sergio T. Amancio Filho , Jorge F. dos Santos, May 2010
The FricRiveting technique is a new alternative spot joining process developed for polymer-metal multimaterial structures. A cylindrical metallic rivet is used to join one or more thermoplastic-metal components by means of plasticizing and deforming the tip of the rotating rivet through frictional heating. Advantages of this new technique are short joining cycles minimal sample preparation and absence of environmental emissions.Fricriveted joints have enhanced mechanical performance.This study demonstrates with aid of a case study of polyetherimide to aluminum alloys the feasibility of FricRiveting.
Jun Tae Kang, Seong Hun Kim, Seung Goo Lee, May 2010
Bamboo fiber may withhold great potential as an alternative to wood, and bamboo can be a raw material to fabricate a composite material and its applicability is being widely investigated. Cellulose fibers can be aligned to the length of the bamboo providing maximum tensile and flexural strengths and rigidity. Increased research in the recent years has considerably contributed to the use of bamboo fibers as a reinforcing material for broader applications. However, it is difficult to obtain polymer/bamboo fiber composite having its excellent mechanical properties, because the bamboo fibers covered with lignin show lack of interfacial adhesion. Therefore, it is necessary to enhance the interfacial adhesion by extracting lignin without microstructure disruption and adding silane coupling agents.
In this research the influence of silane coupling agent, composites with pristine bamboo fiber, delignified bamboo fiber, and delignified and silane treated bamboo fiber were newly prepared and investigated, respectively.
Trends in styling continue to include metallic accents traditionally coming from paints and chrome plating. While paint and plating allow designers to achieve this desired look, both processes come with relatively high cost and are not environmentally friendly. VOCs, chemical disposal and no potential to recycle once the part is painted or plated are environmental concerns. New engineering resins have been developed which eliminate the need for painting and can achieve the desired appearance right out of the mold. This talk explores these resins as a way to get green: both environmentally and with lower cost.
Novel green composites" have been prepared using a conjugated soybean oil resin and corn stover as a natural fiber. Approximately 68 million metric tons of corn stover the residue remaining after harvest is available annually in the United States. The effect of the amount of the natural fiber the length of the fiber and the amount of the crosslinker on the structure and thermal and mechanical properties of the composites has been determined using Soxhlet extraction analysis thermogravimetric analysis dynamic mechanical analysis and tensile testing. Increasing the amount of corn stover and decreasing the length of the fiber results in significant improvements in the mechanical properties of the composites. The Youngƒ??s moduli and tensile strengths of the composites range from 386 to 1324 MPa and 3.5 to 6.5 MPa respectively."Novel green composites" have been prepared using a conjugated soybean oil resin and corn stover as a natural fiber. Approximately 68 million metric tons of corn stover the residue remaining after harvest is available annually in the United States. The effect of the amount of the natural fiber the length of the fiber and the amount of the crosslinker on the structure and thermal and mechanical properties of the composites has been determined using Soxhlet extraction analysis thermogravimetric analysis dynamic mechanical analysis and tensile testing. Increasing the amount of corn stover and decreasing the length of the fiber results in significant improvements in the mechanical properties of the composites. The Youngƒ??s moduli and tensile strengths of the composites range from 386 to 1324 MPa and 3.5 to 6.5 MPa respectively."
Novel “green composites” have been prepared using a
conjugated soybean oil resin and corn stover as a natural
fiber. Approximately 68 million metric tons of corn
stover the residue remaining after harvest is available
annually in the United States. The effect of the amount of
the natural fiber the length of the fiber and the amount of
the crosslinker on the structure and thermal and
mechanical properties of the composites has been
determined using Soxhlet extraction analysis
thermogravimetric analysis dynamic mechanical analysis
and tensile testing. Increasing the amount of corn stover
and decreasing the length of the fiber results in significant
improvements in the mechanical properties of the
composites. The Young’s moduli and tensile strengths of
the composites range from 386 to 1324 MPa and 3.5 to
6.5 MPa respectively.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.