SPE Library


SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!
Conference Proceedings
Magazine and Collected Articles
Newsletters (SPE Chapters)
Recycling
Rheology
Podcasts
Technical Article Briefs
Webinars
Plastic Surveys
Diversity. Equity and Inclusion
SPE News
SPE YouTube Channel
Event Recordings

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Recycling

Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
TRENDS IN RESEARCH ON POLYMER FOAMS
Holger Ruckdäschel , Jan Sandler , Roland Hingmann , Klaus Hahn , Eric Wassner, May 2009

In recent years, concerns over environmental issues have led to a number of new regulations which have had a significant impact on the foams business in general and, in particular, for foams used in thermal insulation applications. Concerns over the depletion of the ozone layer and greenhouse gas emissions have led to the Montreal Protocol and measures to reduce the CO2 emissions. These regulatory issues in combination with traditional performance vs. cost issues are still driving changes in the global foams market today ' changes that are reflected both in the predictions of market growth as well as the technical demands placed on foamed products. In this paper, the expandable polystyrene (EPS) foam market is used to demonstrate the complex interactions of market forces versus technical progress when implementing successful foam products and processes for a wide-spread utilisation.

WELDABILITY OF POLYLACTIC ACID SHEETS AND FILMS
David Grewell , Julius Vogel , Kyle Haubrich , Gowrishankar Srinivashan, May 2009

In this work the weldability of PLA (Polylactic acid), a biodegradable polymer derived from corn starch was examined. Samples of biaxial oriented PLA films of various thicknesses were impulse and ultrasonic welded at various processing parameters. The results showed that relatively high weld strengths could be achieved with impulse welding over a relatively wide range of parameters. In addition, ultrasonic welding produced samples of relatively high strength too. However, while this process can be used with faster cycle times, it was less robust. In detail, ultrasonic welded samples of a thickness of 254 'm that were welded with a cycle time of 0.25 s had a average strength of approximately 160 N, while the results showed a standard deviation up to 50 N. In impulse welding samples of 100 'm thickness welded at 2 and 3 s had a strength of approximately 75 N, while the deviation was approximately 3 or 4 N. It was also seen that sample thickness affected the optimized welding parameters as well as ultimate strength. Having a thickness of 305 'm the weld of the samples had a strength of 80 N while the strength was 25-30 N at a thickness of 200 and 254 'm and a weld time of 0.15 s.

An Innovative Equipment Solution To Reclaiming Post Industrial And Post Consumer Film That Contains High Levels Of Moisture And Printing
Kevin Slusarz, February 2009

This paper will show a new approach of venting high levels of volatiles on reclaim film. The paper will discuss how a cascaded extrusion platform can be utilized to remove high levels of volatile contaminates as material is extruded from a Ram Stuffer extruder and cascaded into a melt fed two stage extruder.

Engineered Recycling Systems for Post-Consumer and Post-Industrial Scrap
Brian Woodcock, February 2009

Auxiliary equipment manufacturers, specifically those who manufacture polymer filtration equipment, have learned through experience what designs and configurations work better than previous ones. Filtration demands today are not what they used to be. Utilizing recycled resin in extrusion is becoming more and more popular. In order to gain maximum efficiency utilizing recycled resins in polymer extrusion, the filtration equipment alone is sometimes not enough. Empirical data will be reviewed comparing several types of filtration media, along with scrap percentages successfully filtered. This data will help illustrate the benefits of one recycling system to another.

Automotive Applications & Expectations of Bio-Based Materials
Eric Connell, February 2009

From the viewpoint of greenhouse gas reduction and resource security, bio-plastics are attractive as carbon neutral polymer materials, but limitations currently exist for industrial usage including automotive applications. Although some parts made of polylactic acid (PLA) have been introduced to certain models in the past five years, in order to adopt bio-plastics extensively in the future, further research and development to overcome their technical issues is necessary. Bio-plastics are also facing non-technical challenges such as their economical aspect and stability of their supply/procurement. We need to deal with the recent situation of soaring prices of agricultural products and future uneasiness of cultivated land and water shortages while bio-fuel attracts recent attention worldwide, and also need to precisely prove the influence of bio-plastics on global environmental impact based on LCA through to material production, parts molding and their disposal. Recent progress on development of bio-plastic materials and automotive parts will be reported and our expectations and demands toward innovation of bio plastic technology will be discussed from the viewpoint of an OEM.

Recycling of Agricultural Film
Werner Herbold, February 2009

With more of the market of plastics scrap being sold into China and US users of recycled plastics try to escape the high prices. There is search for new sources of secondary plastics that are not yet under more or less “Chinese” control and high prices. One big source of raw material is post consumer agricultural film. Since it is often highly contaminated it was not considered being very much worth the effort of recycling. However this opinion is changing based on the rising costs of virgin resin and other forms plastic scrap. The contamination once removed, agricultural film is a very homogenous material that can be used after washing, drying and compounding for many kinds of transformation, from blow film to injection molding. The lecture describes the Herbold size reduction, wash, separation and drying equipment that ends with agglomerated PE-film, ready for compounding or direct transformation in an extrusion or injection molding process. The system comprises a primary shredder, a prewashing unit, a wet granulator, a friction washer, a hydrocyclone separation step to remove foreign plastics and other contamination, a centrifugal dryer, a thermal dryer, finally an agglomerator to produce densified film flakes, easy to transport, easy to feed into its end use in pelletizing, direct extrusion or direct injection molding. See www.herbold.com The problems of agricultral film recycling are to cope with the wear in the machines caused by the high amounts of earth and stones, to cope with the fact that the system produces up to 50% of non plastic output (sand, earth, stones, contaminations) besides the plastics, to cope with the fact that more and more very thin film is used in the business and more and more stretch film, both very difficult to dry. These obstacles can be overcome with the proper know how and equipment.

Quantifying the Biobased Carbon Content within Plastics using ASTM-D6866 : A Technical Overview.
Darden Hood, February 2009

ASTM-D6866 has gained widespread use both domestically and abroad as a clear and concise means to document the renewable carbon content (a.k.a. biobased carbon content) of plastics, liquids, and gases. Composite carbon components of renewable and fossil origin within plastic or any of its originating components are readily identified and conveyed with a single number result (e.g. 65% biobased). Both state and Federal regulators have embraced the method as a solution to identifying biobased carbon within manufactured products, raw materials, and even carbon neutral CO2 emissions from stationary emission sources. The method is the foundation for identifying the biobased carbon content of plastics and other materials listed in the USDA's BioPreferred Program, is cited in California’s greenhouse gas reporting regulations (AB 32), and as of the writing of this abstract is referenced in the EPA’s evolving guidelines for monitoring national greenhouse gas emissions.

Climate Change
John Christy, February 2009

Though Global Warming has garnered considerable attention in the political realm as a nondebatable issue, the notion that scientists have been able to understand the global climate system with such precision that they can confidently predict its evolution is not supported by the evidence. Christy will demonstrate that published, observational datasets, many of which he and UAHuntsville colleagues have constructed from scratch, do not support the hypothesis of rapid climate change due to the human-enhanced greenhouse effect. The impacts of potential "do something about global warming" initiatives will be shown to be ineffectual while at the same time threatening human development, particularly of the poorest among us. This will include research Christy presented as an expert witness in Federal Court, Burlington VT.

Analytical Approaches to Characterize Products and Issues Associated With Recycled Materials
Jennifer Brooks, February 2009

As the market for reprocessed resin increases from both post-industrial and post-consumer plastic products, a unique set of problems is encountered. This paper will explore analytical approaches for identifying and resolving these issues. In one case study, reprocessing of post-consumer nylon fibers resulted in undesirable odors. Gas chromatography with mass spectrometry was utilized to determine the sources of these odors. In a second case study, incorporation of some percentages of post-industrial and post-consumer polyethylene regrind into a molded product was accomplished without sacrificing key properties. Several techniques were applied to compare the responses of the virgin product with that containing 30% regrind. Finally, a consumer product was found to be failing after some time in outdoor storage. Since it was suspected that the presence of regrind was the cause, a battery of chromatographic, spectroscopic, microscopic, and thermal tests were applied to verify the cause of the failures.

New Coupling Technology Helps Olefin-Based Thermoplastic Composites Make Products “Greener
Louis Martin, February 2009

Over the past decade, the fastest growing segment of both the composites and the broader plastics industries has been thermoplastic polyolefin-based systems owning to their excellent cost / performance ratio and processing efficiency. These composites continue to help products produced in many markets reduce human impact on the planet due to their lightweight stiffness and strength, plus excellent design freedom. To achieve required performance, olefins – like most other polymer matrices – require the addition of compatibilizers, process aids, stabilization systems, and coupling agents to increase weatherability, thermal stability, efficient processing, and to ensure a strong bond is achieved between matrix and reinforcements. In the quest for ever more cost-effective but higher performing components, research has focused on manipulating chemistry of both polymers and additive systems, improving and broadening reinforcement offerings, and streamlining production methods. One area that has proven to be especially useful at improving the performance of olefin composites while also reducing residual VOCs has been the development of a new generation of coupling agents based on maleic anhydride (MAH). With these systems, mechanical properties are improved and levels of free MAH are reduced orders of magnitude, typically at lower additive levels than was possible with earlier generation coupling agents. This paper will describe the benefits of these new additives, and how they can assist users of olefin composites in markets as diverse as automotive, ground transportation, construction, appliance, and food preparation produce products that are “greener” and help reduce the negative aspects of human impact on the planet.

Carbon Footprints -- What are they and what good are they?
Shawn Blenis, February 2009

Carbon—specifically, carbon dioxide (CO2)—has gone mainstream and it hasn’t exactly landed in the limelight. Everyone from consumers to retailers to investors is now intently focused on CO2, or more accurately, the elimination of it. A groundswell of media attention, activist groups, new legislation, changing market dynamics, and a link—real or perceived—to global warming have made carbon public enemy number one. Yet, it remains one of the largest industrial manufacturing by-products emitted into the atmosphere by volume. Reducing levels of CO2 output is a complicated process that takes time—the one thing nearly everyone is short on. But as the adage goes: “knowledge is power.” And in a manufacturing industry that is scrambling to “green-ify” itself that knowledge comes in the form of understanding carbon footprints—and putting the results to work. The best way to generate a carbon footprint is through a Life Cycle Assessment (LCA) which systematically assesses the environmental burdens associated with a product, process or activity over the whole of its lifecycle from the extraction and transportation of raw materials through to manufacture, packaging, transport, distribution and finally, disposal. A carbon footprint, which is a component and subset of the more detailed and comprehensive LCA, is a complete analysis of CO2 and other greenhouse gas emissions created by a particular product or service. Carbon footprinting measures the global warming potential (GWP) of products or services. A carbon footprint should be considered by any manufacturer that is serious about truly understanding and reducing its environmental impact and improving public perception. This presentation will address in detail how carbon footprints can be applied to complex manufacturing systems. Such application presents significant challenges, including: • Parameters and scope – Define the functional unit and decide what exactly can be measured and how. This preparatory phase looks at the product systems and system boundaries as well as what assumptions are being made. It also accounts for what should be excluded. • Data collection and quality – Consideration for how data will be collected and how emissions will be quantified must be considered. Also, how reliable is the data? • Impact Assessment – This includes how the data should be benchmarked and presented so it is meaningful to multiple audiences, internal and external. • Drawing sound and objective conclusions – Finally, carbon footprints are only useful if the data is presented in a meaningful and actionable way. These challenges and appropriate avenues to success will be discussed for the benefit of environmental compliance officers, plant managers and anyone involved in the optimization of production processes. This presentation will highlight in a general sense several actual case studies of carbon footprints conducted for major consumer and industrial companies including: Procter & Gamble, Kraft, Novartis and Pepsi and Coca-Cola, among others. The presentation will cover the results in more detail of several carbon footprint exercises including: * A comparison of traditional HDPE plastic shopping bags to new biopolymer bags; * A study comparing the carbon footprint of bottled water to that of tap water; * A case study that looked at the relative carbon footprints of various types of plastic packaging for flocculants. This presentation will discuss how conducting your carbon footprint will quickly identify the “80/20” rule for global warming potential, and how it can subsequently be applied to reduce your environmental impact in an efficient and economical way. In most carbon footprint scenarios, manufacturers will discover that the greatest component of emissions generated comes from two sources, the primary being electrical consumption and the other being transportation of goods. Finally, the presentation will offer information for participants not only on how to conduct a carbon footprint exercise for a particular product, but how to interpret and present the results. This powerful information will allow manufacturers to understand on a micro and macro level the impact that their operations have on the environment— thus their business—and what, if any, action should be taken.

An Eco-efficiency Life Cycle Analysis of Food Waste Collection and Disposal
Keith Edwards, February 2009

An eco-efficiency study was conducted to compare the environmental impacts and total costs of three options for diversion of food waste in a food service setting; 1) disposal in a compostable liner made from Ecoflex®, 2) disposal in a non-compostable liner made from polyethylene and 3) disposal without the use of a liner. The interest and growth of food waste collection and diversion away from landfills to alternative disposal sites is well known to today’s waste managers. Organics collection is at an all time high, and pre and post consumer food waste is a vital part of that stream, reported as 31 million tons from the 2006 EPA report on Municipal Solid Waste (MSW). With so much food waste to collect and divert in the US, infrastructure questions abound. Along with each piece of the infrastructure puzzle, more questions arise concerning the benefit of organics diversion versus the cost of collection and the potential harmful environmental impacts of hauling, sorting and composting of organics. The BASF Eco-Efficiency Analysis (EEA) tool is a sophisticated life cycle assessment tool that considers all of the environmental impacts of the production, use and disposal of a product. The EEA also considers all cost associated with the product use, which is not something typically included in a life cycle assessment. Furthermore, the BASF EEA produces a portfolio that normalizes potential solutions into a grid to allow for comparison on a performance basis. Thus, many potential solutions to a problem can be compared, quickly and accurately, to determine the most environmentally and economically attractive choice.

Message in a Bottle - PET Bottle Recycling
Mike Hendley, February 2009

The United States produces 100 billion bottles per year. If the bottles are not returned to the original high value item, another 100 billion will be produced each of the following years, putting the bottles into various waste streams. Each bottle is high value because it represents lightweight packaging, energy input and consumer confidence in the safety of the product. Thus the question, “can we reuse the asset and is it worthwhile doing so, based on sustainability guidelines”? The presentation provides specifics on equipment that is both capital and operationally effective. It addresses Rpet requiring only 10% of the energy of Virgin PET with a reduction of 30% in CO2 emissions. While satisfying the previous, it can be designed to meet FDA guidelines for contaminate levels along with the requirements of emissions for EPA. We can recapture the asset value and recycling of PET bottles can be accomplished at high capacity with reduced overall costs and also be environmentally friendly.

Life‐Cycle‐Analysis of Hot Beverage Cup Technologies: Coated Paper, PS Foam, and Expanded Recycled PET
Tom Malone, February 2009

A cradle‐to‐grave Life Cycle Assessment (LCA) is performed to compare the environmental impact of using polymer‐coated paper, polystyrene foam, and recycled PET foam in the hot liquid cup applications. The study identifies the material, energy emissions, and waste flows of the products, processes, and services he environmental impact in terms of al warming potential for these alternative utilized over the entire lifecycle. Finally, t energy use, carbon footprint, and the glob technologies is quantified and compared.

Sorting Out the Economics and Science of Green Polymers
Roger Jones, February 2009

For some time, scientists, politicians, environmentalists, and even private citizens have been emphasizing the protection of the environment. However, it is notable that often there is substantial disagreement between advocates in all of these groups about how to best accomplish this worthy goal. Frequently, these differences of opinion occur because the parties are not working from the same set of facts or even comparable concepts. This paper seeks to identify a unified basis for understanding and comparing the critical economic and scientific details of such ideals as sustainability, renewable materials, and alternative energy sources as applied within the plastics industry.

Why Degradable?
Michael Stephen, February 2009

We hear a lot these days about plastic bags – but what’s wrong with plastic? Plastic is very strong - it’s waterproof and its still very cheap. Without plastic it would be impossible to transport food safely and hygienically to millions of homes all over the world and to sell it at affordable prices. The problem is that if ordinary or recycled plastic gets out into the environment it will lie or float around for decades, and we have all heard of the massive patch of plastic waste floating in the Pacific Ocean. Technologies have now become available which can produce plastic products such as shopping bags, garbage sacks, packaging etc. which are fit for purpose, but will harmlessly degrade at the end of their useful life. These fall into two broad categories, namely: 1. Oxo-biodegradable plastics, made from a by-product of oil-refining, which degrade in the environment by a process of oxidation initiated by an additive, and then biodegrade after their molecular weight has reduced to the point where naturallyoccurring micro-organisms can access the material. 2. Hydro-biodegradable plastics, made wholly or partly from crops, which biodegrade in a highly microbial environment, such as composting

Recycling PVC: Debunking the Myth
David Yopak, February 2009

In the age of heightened environmental awareness, many new concepts and materials have been developed and discussed in an effort to either reduce our carbon footprint or limit our use of fossil fuels for plastic materials. One material, often misunderstood, has had a positive impact on the environment for years. Both rigid and flexible compounds of Polyvinyl Chloride have been used in a myriad of applications ranging from outdoor furniture, to medical applications, to compliance with NSF standards for potable water, all while offering excellent recyclability characteristics as well as a smaller carbon foot print than many conventional commodity thermoplastics. This paper will provide a practical discussion of recycling flexible Vinyl and the potential uses of the recyclate. From sourcing to processing, all aspects of a vinyl recycling operation are covered, with a primary focus on the material characteristics of the recyclate, and the ability to tailor the recycled compound to a given set of physical properties. In addition, further discussions will include potential uses of the recyclate, as well as ideas for infrastructure to promote the use of post consumer PVC.

Banana Fiber Composites for Automotive & Transportation Applications
Lina Herrera-Estrada, September 2008

The purpose of this work was to establish and optimize a process for the production of banana fiber reinforced composite materials with a thermoset suitable for automotive and transportation industry applications. Fiber surface chemical modifications and treatments were studied along with processing conditions for epoxy and eco-polyester banana fiber composites. Flexural tests show that banana fiber/eco-polyester composites have a higher flexural strength and modulus due to improved fiber/matrix interaction. Environmental tests were conducted and the compressive properties of the composites were evaluated before and after moisture absorption. The resulting banana fiber/epoxy composites were found to yield a flexural strength of 34.99 MPa and compressive strength of 122.11 MPa when alkaline pretreated with improved environmental exposure resistance. While the non alkaline pretreated banana fiber/polyester composites were found to yield a flexural strength of 40.16 MPa and compressive strength of 123.28 MPa with higher hygrothermal resistance than pretreated fiber composites with the same matrix.

Recent Developments in Renewable Resource-Based Resins
Darcy Culkin, September 2008

PowerPoint Presentation at ACCE 2008.

Samsung's Bioplastics for Automobiles
Brian Grosser, September 2008

PowerPoint Presentation at ACCE 2008.








spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net