The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Bradley Mount, Clay Guillory, Dave Rheinheimer, Nino Pecina, October 2023
To address growing supply chain pressures, manufacturers are turning to Additive Manufacturing (AM) to create quality, cost-efficient products faster. Plastic thermoforming companies like Duo Form have discovered how to leverage large-format extrusion 3D printing using low-cost plastic pellets to gain a competitive edge. They are producing medium-to-large-sized thermoforming molds in less than half the time, and at a fraction of the cost compared to traditional mold-making methods.
Join engineering and business experts from 3D Systems and Duo Form as we dive deep into the integration that has made pellet-extrusion AM so beneficial for Duo Form, and how you can reap the same benefits in your own thermoforming processes.
In this webinar, you will learn about:
How pellet extrusion 3D printing enables up to 10X faster mold print times, with up to 10X savings on material costs
Duo Form specific case studies and ROI examples
Best practices that improve AM production and mold performance such as: how to print porous molds, using infill settings for improved vacuum pulls, and more!
How to select the right AM solution, including options for additive-subtractive hybrid systems
Bradley Mount, Clay Guillory, Dave Rheinheimer, Nino Pecina, April 2023
To address growing supply chain pressures, manufacturers are turning to Additive Manufacturing (AM) to create quality, cost-efficient products faster. Plastic thermoforming companies like Duo Form have discovered how to leverage large-format extrusion 3D printing using low-cost plastic pellets to gain a competitive edge. They are producing medium-to-large-sized thermoforming molds in less than half the time, and at a fraction of the cost compared to traditional mold-making methods.
Join engineering and business experts from 3D Systems and Duo Form as we dive deep into the integration that has made pellet-extrusion AM so beneficial for Duo Form, and how you can reap the same benefits in your own thermoforming processes.
In this webinar, you will learn about:
How pellet extrusion 3D printing enables up to 10X faster mold print times, with up to 10X savings on material costs
Duo Form specific case studies and ROI examples
Best practices that improve AM production and mold performance such as: how to print porous molds, using infill settings for improved vacuum pulls, and more!
How to select the right AM solution, including options for additive-subtractive hybrid systems
HP Latex ink technology is enabling traditional, tried-and-true industrial plastics companies to keep their businesses relevant by adapting to a direct-to-substrate printing technology that gives them access to a deeper, wider product development capacity, faster go-to-market routes and efficiencies realized in materials, labor and capacity.
Digital solutions with such capability not only differentiate these companies from their competition but also enable them to provide new products and solutions – digitally decorating plastics with inks that are thermoformable allow for expansion into new markets with new products.
Amol Avhad | Carlos Pereira | Raghavendra Janiwarad | Bhaskar Patham | John Perdikoulias, April 2021
Thermoforming is an efficient, very cost-effective and widely used process for the production of large parts in transportation applications. The long-haul truck roof fairing demonstrates the feasibility of replacing traditional materials with thermoplastics in order to improve aerodynamics and, in turn, cut a truck’s fuel use. Simulation becomes a powerful means for a large part and complex process to arrive at, and optimize process conditions. This, in turn, helps to achieve the desired product quality for a given material.
The present study describes the results from the use of thermoforming simulation as a tool for optimizing sheet thickness, sheet temperature, and processing conditions to achieve a desired thickness distribution and minimal weight of a truck fairing part without sacrificing its structural performance.
The given design of truck roof fairing part is simulated using Accuform’s commercial thermoforming simulation software TSIM® for three different resin materials (acrylonitrile butadiene styrene (ABS), a blend of polycarbonate (PC) and ABS (PC/ABS); and thermoplastic olefin (TPO). These materials are modelled using nonlinear time-dependent viscoelastic K-BKZ model. The model parameters are estimated using stress-strain measurements. The average polymer sheet thickness and sheet temperature of each material varied to study thickness distribution and weight of the part. Finally, simulation results compare the thermoforming performance in terms of thickness distribution and part weight, and recommends optimal processing conditions for each material.
Dennis Balcerowiak M.Sc | Prof. Dr.-Ing. Christian Hopmann | Dr.-Ing. Martin Facklam, April 2021
Thermoforming enables the cost-effective production of thin-walled packaging products. Pre-stretch plugs are used to adjust the resulting wall thickness distribution of the formed parts such as cups. Due to the friction and adhesion of the plastic material to the pre-stretch plug, the material is less stretched in areas having contact to the plug than in areas without contact and accordingly the wall thickness distribution is influenced. In addition to a wide range of process parameters, such as sheet temperature, stretching distance or the activation time of the forming air, the surface roughness of the pre-stretch plugs has an influence on the wall thickness distribution. In order to estimate the resulting wall thickness distribution of the formed parts, the influence of the surface roughness on the resulting wall thickness distribution was analyzed at the IKV. The use of pre-stretch plugs with different surface roughness showed, that the influence of the roughness on the wall thickness distribution depends especially on the plugs geometries and thus stretching conditions of the sheet.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.