SPE-Inspiring Plastics Professionals

SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Fabrication of Biocompatible Poly (butylene adipate-co-terephthalate) PBAT Coating for Biomedical Applications
Syed Hussain R. Rizvi, Alicia D?Souza, Mickey Richardson, Tre Welch, Nandika D?Souza, May 2015

The objective of the present study is to investigate the mechanical strength and thermal properties (melting, crystallization and glass transition) of petroleum based biocompatible poly (butylene adipate-co-terephthalate) (PBAT) as well as its synergistic blend with a nanofiller LDH (Layered double hydroxide). In the present study a bionanocomposite with a higher percentage of nanofillers was prepared and deformation response examined.

Laser Imageable Polymeric Film
Patrick Thomas, May 2015

It has been found that polymeric film formulated with a photochromatic pigment offers a substantial advantage over prior art methods of laser imaging film. Polymeric film formulated with a photochromatic pigment which undergoes a white to black color change upon exposed to laser irradiation are durable and abrasion-resistant since the photochromatic pigment is within the body of the plastic film.

Toughening Hollow Glass Microsphere Filled Low Density Nylon Compounds
Baris Yalcin, Mark Williams, May 2015

No Abstract Available.

Formulation Strategy to Achieve Highly Colorable and Weatherable ASA
Steve Blazey, May 2015

ASA polymers (Acrylonitrile-Styrene-Acrylate) represent one family of weatherable polymers often used in outdoor applications requiring long term color and physical properties retention. However, highly chromatic colors are difficult to achieve in opaque weatherable polymers such as ASA. This paper will identify and discuss several factors that influence polymer opacity and discuss examples where highly chromatic weatherable colors are achieved through the manipulation of polymer refractive index, material and color formulation strategy.

Undergraduate Modules for Biobased Plastics
Carol Barry, Bridgette Budhlall, Ramaswamy Nagarajan, May 2015

Educational modules focused on bio-based polymers were successfully developed and implemented for undergraduate curricula. These modules included experiments for (1) synthesis of a biodegradable polymer, (2) characterizing the properties of this polymer and comparing these properties with those of a commonly-used petroleum-based polymer, and (3) melt processing a bio-based, biodegradable polymer. All modules were well-received by and produced significant learning by the undergraduate students.

Content Bridge Value Creation - How In-Mold Labeling and Smart Phone Connectivity Can Add Value to Plastic Products
Robert Travis, May 2015

This paper explores the value proposition of combining the recognized advantages of in-mold labeling with relevant web content to create a permanent link to a molded the part. The result is a content bridge that can be retrieved by smart phone users to create a new level of utility and consumer engagement.

A Practical Example of Film Extrusion Process Troubleshooting and Fine Tuning
Olivier Catherine, May 2015

This case study is a practical example showing the importance of process and material characterization when designing high performance extrusion dies. In this study, we show the approach to troubleshoot a film extrusion process as the initial extrusion performance is not meeting the theoretical behavior.

Warpage Control of Thin-Walled Parts Using Local Mold Temperature Setting in Injection Molding
Ming-Shyan Huang, Shih-Chih Nian, Chih-Yang Wu, May 2015

Computer, communication, and consumer electronics products are currently required to be lightweight, portable, and convenient. Injection molding is among the most used techniques for mass production in plastic processing industries; however, producing thinner parts that do not warp is challenging. Causes of warpage in thin-walled molding are numerous such as material properties, product geometry, mold design, and processing conditions. For example, inconsistent thickness in component geometry, poor sprue-runner-gate or cooling design in the injection mold, and improper molding condition settings may cause plastic parts to warp excessively. Warpage causes unpredictable component shapes, which may cause poor assembly quality. Although mold cooling achieved by adjusting mold temperatures improves warpage, the conventional single mold temperature setting for each male or female mold plate limits the cooling capability. Consequently, this study employs an asymmetric cover for handheld communication devices as a research carrier, and proposes a local mold temperature setting to adjust the deformation of injection molded parts. Particularly, a neutral axis theory for analyzing the temperature distribution at the cross section of the thickness and then predicting the trend of warpage is used. Through CAE simulation and experiment, the feasibility of employing an ideal cooling design featured with local mold temperature setting to reduce warpage has been verified.

Evaluation of Shelf Life of Resin
Shantanu Shivdekar, May 2015

Resin samples were aged under accelerated conditions and post aging Material characterization was performed using analytical techniques such as Gel Permeation Chromatography (GPC), Oxidation Induction Time (OIT) and Differential Scanning Calorimetry (DSC).

Each technique provided specific polymer evaluation. GPC was used to provide molecular weight information. Molecular weight of polymer is one of the key characteristics since it is related to mechanical properties such as stiffness, tensile strength and flexibility of the material. Molecular weight of polymer is directly related to overall performance of material.

DSC was used to provide thermal properties such as melting and glass transition temperature of polymer. These thermal properties are mainly used in establishing processing conditions (molding and extrusion) of polymers. Any drastic change in the melting point affects process settings and can be related to material degradation via change in the melt viscosity.

The primary source of degradation during shelf life exposure is thermal oxidation. Resistance to oxidation is manifested by a higher OIT. As a result, Samples are placed into DSC testing equipment with continuous exposure to oxygen for set amount of time and temperature. Output is recorded as time (minutes) it takes to observe oxidative exotherm.

In summary, key material properties such as molecular weight , oxidation resistance and thermal property (melting point) were unchanged when exposed to accelerated aging conditions simulating ten years (in case of ABS, Nylon, PEBAX, TPU and PVOH resin will be five years) of shelf life.

Novel Saturated Slip Additive with Superior Oxidative Stability
Adam Maltby, Phil Mcoy, Martin Read, May 2015

Since the 1950?s primary fatty acid amides have been used as additives in polyolefins and other polymers to reduce the coefficient of friction of films, enable easy mould release, enable easy assembly of moulded components and reduce tendency of polymer articles to scratch. Unsaturated amides such as oleamide and erucamide have been recognised the best performing additives in this area giving low friction by rapid migration to the polymer surface to form a coherent lubricating layer or layers. It is also well known that the elimination of the double from oleamide or erucamide offers considerable advantages in oxidative stability over the unsaturates but at the expense of slip performance.

This work illustrates that by manipulation of the alkyl chain it is possible to produce a fully saturated slip additive with excellent stability whilst retaining good friction reducing performance comparable with unsaturated slip agents. Comparison of this new slip additive with conventional slip agents in LDPE film, PP film, PP and bottle closures is reported showing the additive to be largely equivalent to erucamide.

Colour and retention of slip properties after exposure to an oxidising environment is also demonstrated along with good anti-scratch and low visible bloom in a black PP automotive formulation.

High Strain Rate Testing of Glass Fiber Reinforced PEEK
Stuart Brown, David Anderson, Jorgen Bergstrom, Gregory Freeburn, Ethan Ananny, May 2015

Fiber reinforced polymers are used in a wide range of applications involving impact, including automobile and aerospace components, consumer products, and industrial products. These materials, however, are difficult to characterize under high strain rate conditions, particularly at strain rates exceeding 1000 1/second. This difficulty occurs due to numerous factors, including specimen design and size factors, absence of appropriate test equipment for high strain rate characterization, and interpretation of measurement data. This presentation presents high strain rate testing experience on short fiber injection molded thermoplastics. We present stress/strain behavior at different strain rates, and discuss the effect of specimen design and different methods to evaluate high strain rate response and failure

Study on Interphase Transfer of the Liquid Tackifier between Immiscible Rubber Pair
Nawaphorn Kuhakongkiat, May 2015

The transfer phenomenon of a third component between immiscible rubber pair was studied using natural rubber (NR) and poly(isobutylene) (PIB). The coumarone-indene tackifier was employed as the third component. After the laminated rubber sheets were annealed at various temperatures, the tackifier distribution was characterized by the dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). It was found that the tackifier transfer between the rubbers occurs. Furthermore, the amount of the tackifier in each rubber depends on the ambient temperature.

Benefits of Conformal Cooling in improving Blow Molded Container Performance
Sumit Mukherjee, May 2015

Mold cooling efficiency often affects container performance in many ways. The change in dimensions after molding and the gradual relaxation stresses can cause performance issues. For example, carbonated soft drink containers can exhibit a lower level of stress crack performance or excessive gate area relaxation can cause containers to rocker and tip over. The higher production speeds associated with newest machinery, result in lower blow mold residence time. This is justification to take a fresh look at how to improve the package performance via more effective mold cooling. This study looks at improving mold cooling methodologies via virtual modeling. This is done by analyzing different preform and mold temperatures to determine optimum cooling channel design. Several case studies for petaloid and champagne style-base for carbonated soft drink containers are presented in this paper.

Using ZeMac? Copolymers To Reduce Costs in Nylon Compounds While Meeting Exacting Customer Performance Specifications
Ashok M. Adur, Prasad Taranekar, May 2015

Nylon is widely used in many applications. At the 2013 ANTEC in Cincinnati, our paper covered the results obtained with compounding primarily recycled nylon with the addition of small quantities of alternating ethylene and maleic anhydride ZeMac? copolymers and specific property improvements for applications in injection molded compounds. The resulting compounds have performance that can match or exceed prime virgin nylon at 30-50% cost savings. At the 2014 ANTEC in Las Vegas, our paper covered the performance enhancements to provide several advantages for upgrading virgin nylon such as increasing relative viscosity for improved melt strength and the unique improvements obtained in impact-modified nylon-6 and nylon-6,6 by reducing the negative impact of traditional impact modifiers by offering synergistic set of properties. This current paper will cover how using the unique chemistry of these copolymer products can reduce costs in nylon compounds and still meet performance specifications.

PET/Organoclay Nanocomposites Synthesized by Solvent Blending with Sonication
Karnik Tarverdi, Peter Allan, Somchoke Sontikaew, May 2015

Preparation and analysis of PET nanocomposites with 5wt% organoclay via solution blending using sonication technique. Degree of dispersion of organoclay in PET nanocomposites was observed by using SEM technique. SEM images of plasma treatment etching to show degree of clay distribution in the composite and distance between clay particles was studied and reported. SEM results exhibit the significance of sonication on the separation and distribution of clay particles and layers in the PET nanocomposites. Thermal analysis results using DSC technique revealed that the existence of solvent residue in the cast virgin PET samples and cast PET/clay nanocomposites samples resulted in a decrease of the glass transition temperature and cooling-crystallization temperature but an increase in the rate of crystallization, the heating-crystallization temperature, and crystallinity content.

Analysis of the Rheological Behavior of EPDM Rubber with Blowing Agent
Nora C. Restrepo Zapata, Benjamin Eagleburguer, Travis Saari, Tim A. Osswald, Juan P. Hern ndez-Ortiz, May 2015

An experimental investigation is made to study the rheological behavior of an Ethylene Propylene Diene Terpolymer rubber (EPDM) compound for extrusion containing blowing agent. The variation of the viscosity with time has been determined using a plate-plate rheometer at constant frequency. The obtained data is modeled using the Castro-Macosko model and the methodology to develop it uses a nonlinear least-squares regression method following the protocol proposed by Hernandez-Ortiz and Osswald. A good agreement between the data and the theoretical values is found and the values of constant viscosity are superposed in the TTT diagram to determine the operational window for the compound. The effect of the vulcanization and the temperature of processing on the rheological properties have also been studied.

Novel Integration Concepts for Automotive Sensors in Composite Structures
Linda Klein, Peter Middendorf, May 2015

An approach to compensate additional costs by using carbon fiber reinforced polymer (CFRP) structures for automotive lightweight components is functionalized lightweight design. The latter is addressed by the publicly funded project ARENA2036-LeiFu, ?Lightweight Design by Functional Integration? at the University of Stuttgart (Germany). As one of the participants the Robert Bosch Company is focusing on the integration of state of the art automotive sensors in CFRP structural parts. The research approach is based on the functional characterization of integrated automotive sensors and their behavior being surrounded by the new carrier material is analyzed. This paper provides an initial functional assessment of the sensor?s characteristics as it is integrated in the new carrier structure. Also a novel preparation towards the integration of the sensor's subsystem inside the laminate is demonstrated.

Parameterization and Validation of Discrete Element Simulations regarding the Pressure Propagation in Plastic Pellets Bulk
Johann S. Lessmann, Volker Schoeppner, May 2015

The Discrete Element Method (DEM) is a powerful instrument when simulating the behavior of bulk solids such as pellets or powders. However, the quality of the simulation results is directly related to the simulation and material parameters used. The goal of this contribution is to describe a method of parameterization to be used in simulating the compression of plastic goods in form of bulk solids. Particular attention is paid to the coefficient of restitution (COR), as well as to the yield strength of the materials. The parameters under investigation have been determined such that identical pressure-deformation curves could be obtained for the comparison between the simulation and the experimental results. The parameters thus determined can, under certain circumstances, also be used later in simulations of conveyance processes with pressure buildup. Such simulations are important to better understand the buildup of pressure in high-speed single-screw extruders.

Thermal History Effect of PTFE
Scott A. Eastman, May 2015

Failure analysis is often thought of as a technical support service for the sole purpose of fixing underperforming materials, components, systems, or processes which typically result from unforeseen, unexpected, or underestimated conditions or changes. In most cases, identifying the root cause of the issue at hand and providing a mitigation strategy are the primary functions of failure analysis, however more value can be extracted from these efforts. While it is imperative that a root cause and mitigation strategy are identified in the most efficient and effective manner, having the mindset that each effort presents an opportunity for improvement and innovation can drive an even greater impact from these investigations.

One case study will be discussed where during the process of identifying root cause and mitigation strategies of a polytetrafluoroethylene (PTFE) tube failure, additional materials characterization methods and understanding were developed that could have impact on both current and future materials characterization techniques and technology innovations. Specifically thermomechanical analysis techniques were developed to accurately identify the maximum temperature exposure of PTFE tube segments. These techniques were made possible by discovering that PTFE has an inherent thermomechanical memory behavior that effectively records the most prominent temperature excursions while under mechanical stress or applied strain.

Progress in Assessing Fiber Orientation and Flexibility with Increased Fiber Lengths
Mark J. Cieslinski, Donald G. Baird, May 2015

The mechanical performance of a fiber reinforced injection molded composite is determined by the fiber length and orientation within the part. During processing, significant fiber length attrition can occur which will result in a broad distribution of fiber lengths. In this work, we investigate three fiber length distributions created from the same base formulation in order to gain an understanding of fiber orientation dynamics and shear stress during the startup of simple shear flow. Results show that the rate of fiber orientation and the extent of fiber alignment will decrease with increases in fiber length. Differences in the fiber length appear to be more pronounced in measurements of shear stress in simple shear flow than direct measurements of fiber orientation. A semi-flexible orientation model is used to compare the bending contribution to stress based on measured values of fiber orientation. Trends in predicted bending stress seem to coincide with the experimental values.







spe2018logov4.png
Welcome Guest!   Login

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net