SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

PROCESSING COSTS AND ENVIRONMENTAL IMPACT OF BIO-PLASTICS
Julius Vogel , Dr. David Grewell , Rob Anex, May 2010

This work studied bio-plastics such as polylactic acid (PLA) and protein based plastics form corn and compared to petroleum based plastics such polyethylene (PE) and polystyrene in terms of their ecological as well as economical performance from a 'Cradle to Grave' perspective. This study included energy input, emissions output of green house gases and costs from their life cycle steps of raw material acquisition to the final product disposal. It was found that products manufactured from bio-based feedstocks were relatively higher in cost, they resulted in less green house gas emissions.

VIRTUAL SIMULATION OF TOP LOAD PERFORMANCE OF PLASTIC BOTTLES
Art Schubert, May 2010

A novel analytical computational model was developed to predict Top Load and Side Load performance of oval containers. The performance of oval and other non round containers is dependent on the thickness distribution achieved during blow molding. Simulating blow molding and performance of containers using Virtual Prototypingƒ?› Software and feeding the input for Finite Element Analysis provides an accurate mechanism to predict container performance. A 24oz. generic oval container with aspect ratio of 1.58 was simulated for empty and filled top load performance. A critical part of blow molding oval containers is the ability to achieve a more uniform thickness profile along the circumference of the container at any given height. This isachieved by using preferential heating where the infra-red?ÿ heating ovens have special slotted reflector plates that allow the preform to be heated differently 90?ø apart. For the 24oz. oval container with a high aspect ratio it was observed that the use of preferential heating is necessary to achieve uniform thickness distribution in the range of 0.3mm-0.4mm. A non preferentially heated preform resulted in container thickness being 0.4-0.6mm in a concentrated region adjoining the minor axis. The preferentially heated performs resulted in containers having better empty and filled Top load. The side grip load was the only performance characteristic that was higher for the non preferentially heated containers but that works only in a small region and the non uniformity of thickness makes the container not aesthetically pleasing and would not be acceptable in a production process due to inconsistency in material distribution.

EPOLYPROPYLENE - CUP CONVERSION FROM INJECTION MOLDING TO THERMOFORMING
Piaras de Cléir, May 2010

Food containers such as cups can be made by injection molding (IM) or thermoforming (TF). Typical materials are high density polyethylene (HDPE) polypropylene (PP) and high impact polystyrene (HIPS). For many years the preferred choice for polypropylene cups was IM because it produces a high quality part with excellent part-to-part consistency. Conventional TF to make similar containers in PP results in wider dimensional tolerances. On the other hand in-line trimin- place thermoforming overcomes many of the limitations of conventional TF and allows for the production of high quality containers. This paper outlines the conversion from IM to trim-in-place for a 235-ml cup and compares the physical properties of cups from each process.

THE IMPORTANCE OF MOLD TEMPERATURE ON THE PROPERTIES OF POLYPHENYLENE SULFIDE PARTS
Michael R. Greer , Alan Reaume , George Kowalski, May 2010

Polyphenylene Sulfide (PPS) is a semi-crystalline engineering thermoplastic recognized for its unique combination of properties including chemical resistance, dimensional stability and thermal stability. The exceptional performance of this material in these environments has lead to extensive use in automotive ƒ??under the hoodƒ? applications. To maximize these material properties and make the high quality parts demanded by the automotive industry, it is very important that certain guidelines are followed in the molding process, failure to do so can result in premature part failure. This paper outlines one of the basic molding requirements, mold temperature, and the effect it has on the finished part.

ENHANCING BIOPOLYMERS WITH HIGH PERFORMANCE TALC PRODUCTS
Alfredo K. M. Morita, May 2010

The effect of talcs on PolyLactic Acid (PLA) performance has been studied with a focus on properties of fully crystallized PLA. The results show that talc could be used as an effective nucleation agent to improve mechanical properties of PLA including stiffness, heat deflection temperature and impact strength. It is shown that optimum crystallization of PLA could result in a maximum impact performance that is independent of the type of talc if complete crystallization is achieved. However, utilizing high performing talc such as the high-aspect ratio Luzenac HAR?? talc could allow maximum impact performance of crystallized PLA to be achieved at lower talc loading. It is also shown that the addition of plasticizers and impact modifiers could further improve impact properties through modifying the amorphous phase of PLA.

MODIFIED POLYETHYLENE FOR IMPROVED ADHESION PROPERTIES IN ROTATIONALLY MOLDED PARTS
Alfredo K. M. Morita, May 2010

Rotationally molded polyethylene parts filled with polyurethane foam have been used for various applications in different marketplaces worldwide. However one of the main deficiencies of these two-component parts is a weak interface between both materials which often causes delamination of the polyurethane foam from the polyethylene skin.New polyethylene powders, developed by ICO Polymers using a unique and innovative low pressure plasma technology, successfully overcome the issues related to poor PE/PU foam adhesion without any modification to the current molding practices used by molders.An introduction to the technology, along with actual results achieved by the use, will be presented.

SIMULATION OPTIMIZATION APPLICATIONS IN INJECTION MOLDING
Oliver Henze, Erik Waßner, Rüdiger Krech, May 2010

A simulation optimization methodology based on design of experiments and metamodeling is applied to injection molding in this work. The proposed method is used first to select the best processing conditions for injection molding a Kodak disposable camera front plate; and, secondly to decide on the best injection gates configuration from three different injection scenarios, as well as the values of mold temperature and melt temperature for a real automotive part in order to minimize variability. The optimization results are discussed in light of the qualities of the simulation optimization method.

THE RESEARCH OF REDUCE RESIDUAL STRESS OF POLYCARBONATE PRODUCTS BY HEAT TREATMENT
Yu Pin Tsai , Jei Juan Wei , Ray Quen Hsu, May 2010

As a kind of thermoplastic with excellent performance, polycarbonate is an ideal substitute for traditional glass applied in many optical products for its lightness and good transparency. Most of the products are made by injection molding, but yield of the products couldn't be improved for the problems on residual stress.Transparent polycarbonate will be used in the experiments; photoelasticity is to be used to calculate residual stress of specimen. The results indicate that residual stress decreases as the heating time increases during the heat treatment. In addition, thickness of specimens also may exert an influence on the effect of heat treatment.

INNOVATIVE PVD TECHNOLOGY SUSTAINABLE METALLIZATION PROCESSING WITH ADVANCED FUNCTIONALITIES FOR PLASTIC SURFACES
Dr. Ruediger Schaefer , Carlos Ribeiro, May 2010

The continuing trend toward metallic surfaces on plastics has motivated hartec to further develop PVD metallization by magnetron sputtering.Specifically, the combination of PVD + Topcoat (paint) appears to be a viable alternative to electroplated surfaces and real metals. Ecologically, the PVD process is sustainable, 100% non-toxic and emission free.PVD metallization offers a wide range of applications with advanced functionalities: Daynight design realized by laser-etching; optically and electromagnetically translucent coatings for 'hidden' displays and sensor technology; flexible substrates like TPU or TPE, for example used for safety components like airbag emblems in the automotive industry etc.

A STUDY OF THE FREEZING PHENOMENA IN PVC AND CPVC PIPE SYSTEMS
Ruediger Schaefer, Carlos Ribeiro, May 2010

Residential and commercial piping systems often experience complex failures from freeze events. In this paper the freezing failures are studied by replicating pipe freezing conditions in a laboratory setting. Testing was performed on ?« inch (12.5mm) PVC and CPVC pipes. Pressure and temperature during the freeze event were monitored and the fracture modes of failed pipes were examined. Freeze events result in excessively high pressures. It has been shown that during a freeze event, the properties of plastic pipes are advantageous over other more rigid piping systems. In this study, it was observed that PVC and CPVC pipes were able to sustain over thirty times the typical household water pressure before bursting occurred.

VALIDATION OF IN-MOLD SHRINKAGE SENSOR FOR DIFFERENT CAVITY THICKNESSES
Arnaldo T. Lorenzo, María L. Arnal, Alejandro J. Müller, May 2010

An in-mold shrinkage sensor having a deflectable diaphragm under melt pressure, instrumented with strain gages connected in a full bridge circuit is designed and validated for conventional and thin wall parts. Molded part shrinkage is then measured as the polymer melt solidifies, shrinks, and retracts from the mold wall. The DOE was conducted using HIPS to validate the sensor performance for the thickness of 2.5 mm and 1.5 mm. With a 2.5 mm and 1.5 mm cavity thickness, the coefficient of correlation, R2, to the final part thickness was 0.939 and with 0.966 respectively for the in-mold shrinkage sensor.

DILUENT EFFECT OF THE POLY(ETHYLENE-alt-PROPYLENE) (PEP) BLOCK UPON THE POLYETHYLENE (PE) THERMAL FRACTIONATION OF PE-block-PEP DIBLOCK COPOLYMERS
Arnaldo T. Lorenzo , María L. Arnal , Alejandro J. Müller, May 2010

The diluent effect of the amorphous (rubbery) PEP block upon the SSA thermal fractionation of the PE component as compared with the PE homopolymer was evaluated. The shape and distribution of the melting peaks obtained after applying the SSA protocol is notably different in the PE-b-PEP diblock copolymers. It has been established how the presence of a diluent blended with the amorphous zones of this semicrystalline polymer trends to increase the molecular mobility of PE chains in such a way that fractions closer to thermodynamic equilibrium can be generated.

MICROCELLULAR EXTRUSION FOAMING FOR LINEAR AND LONG-CHAIN-BRANCHED POLYLACTIDE
Wesley Petersen, Nicole Larson, May 2010

In this work, microcellular extrusion foaming for both linear and long-chain-branched (LCB) polylactide (PLA) was processed on a single-screw extrusion system with CO2 as a blowing agent. The rheological experiments were conducted on an advanced rheometric expansion system (ARES) rheometer to compare the rheological properties among linear and LCB-PLAs without blowing agent. The characterization for foamed samples shows that in comparison to the linear PLA, the LCB-PLA foams have larger volume expansion ratios, decreased cell-opening, smaller average cell sizes and higher cell densities, due to the higher viscosity, higher melt strength and higher crystallinity derived from long-chain branching.

USE OF COMPOSITE MATERIALS IN A HYDROFOIL ON A HIGH-SPEED ULTRA LOW-WAKE PASSENGER FERRY
Wesley Petersen , Nicole Larson, May 2010

High-speed passenger ferry service is attractive in many communities due to its convenience and expedience but has in certain instances caused problems related to pollution and shoreline erosion. One approach to mitigating these problems is to switch from widely used metals to lighter composite materials in vessel construction. This shift in materials would increase efficiency and decrease wake generation. This research addresses several challenges that have been faced when incorporating composite materials into a hydrofoil for a passenger ferry and describes a potential solution.

USE OF COMPOSITE MATERIALS IN A HYDROFOIL ON A HIGH-SPEED, ULTRA LOW-WAKE PASSENGER FERRY
Wesley Petersen , Nicole Larson, May 2010

High-speed passenger ferry service is attractive in many communities due to its convenience and expedience, but has, in certain instances, caused problems related to pollution and shoreline erosion. One approach to mitigating these problems is to switch from widely used metals to lighter composite materials in vessel construction. This shift in materials would increase efficiency and decrease wake generation. This research addresses several challenges that have been faced when incorporating composite materials into a hydrofoil for a passenger ferry and describes a potential solution.

IDENTIFICATION OF THERMOFORMABILITY INDICATORS FOR MULTILAYER FILMS
Shriram Bagrodia, May 2010

To identify dimensional thermoformability indicators, high-temperature tensile and differential scanning calorimetry (DSC) methods were studied. It was found that a new indicator ADR(TD) minus ADR(MD), i.e., the differential of the area draw ratios (ADR) between transverse direction (TD) and machine direction (MD) of a multilayer film can rank or predict thermoformability of the multilayer films with good resolution. This new indicator and a derived dimensional thermoformability index (DTI) can differentiate between different nylons, polyethylenes and multilayer structures. The ranking correlates well with the overall first-heat of fusion of the multilayer films. Thus, these indicators can be used as tools to help design multilayer structures.

ADVANCED MATERIALS FROM NOVEL BIO-BASED RESINS
Shriram Bagrodia, May 2010

Cereplast Hybrid ResinsTM also known asBIOPOLYOLEFINSƒ?› are bio-based plastic resins replacing 50 percent or more of the petroleum content in traditional plastic products with renewable source materials such as starches from corn tapioca wheat and potatoes. The addition of CereplastHybrid Resins TM to the existing line of CompostableResins TM further establishes Cereplast as the leadingsolutions provider in environmental and sustainable plastics. The first product from the Cereplast HybridResins TM family is BiopropyleneTM a 50 percent biobasedresin that can replace traditional polypropylenein many applications. Cereplast Hybrid Resins TM canbe processed at the same cycle time as traditional plastics on conventional equipment but requires less energy in the production process by using significantly lower processing temperatures. Inaddition Cereplast Hybrid Resins TM meet therequirements for toxicity set by ASTM D 6400-04specifications making Cereplast Hybrid Resins TMsafe for all applications. This paper further discusses mechanical properties and potential applications ofBiopropyleneTM.

MORPHOLOGY DEVELOPMENT WITH TENSILE STRAIN IN GLASS FLAKE FILLED POLYPROPYLENE
Katherine M. Shipley , Krishnamurthy Jayaraman , Kevin L. Nichols , Michael H. Mazor, May 2010

The object of this study was to understand the phenomenon of voiding around particles in stretching filled polymers below the melting temperature with plate shaped fillers. Injection molded tensile bars of glass flake filled polypropylene with 20 vol% of glass flakes were subjected to axial strains ranging from 0.1% to 1.0% at130?øC to 150?øC in a tensile frame. The onset ofdebonding in glass flake filled polypropylene at these temperatures was readily identified from stress-strain curves in tensile tests. Substantial void growth was observed around the flakes at strains as low as 0.5% and 1%. Furthermore voids were seen to develop all around the glass flakes rather than just at the ends along the stretch direction.

THERMAL FRACTIONATION BY SSA AS AN APPROACH FOR THE INDENTIFICATION OF BINARY PE BLENDS
Franco Guastaferro Preda , Fabiana Lulli , Johan J. Sánchez, May 2010

Thermal fractionation by Successive Self Nucleation and Annealing (SSA) technique has been used as qualitative method for characterization of the branch distribution in polyethylenes. Low Density and Linear Low Density Polyethylenes differentiate at molecular level by the quantity, distribution and type of branches, and both are widely used in blends, especially for film blowing. In some cases, it is necessary to identify if a film has been produced with a blend, which is difficult if one PE is used in low proportion (less than 30%). By applying modifications to the regular SSA protocol, it was possible to segregate cristallizable fractions of each PE, in proportions as low as 10% in the blend

FINITE ELEMENT SIMULATION OF 3D UNSTEADY VISCOELASTIC FREE SURFACE FLOW WITH LEVEL SET METHOD
Dirk Schmiederer, Ines Kühnert, Ernst Schmachtenberg, May 2010

The simulation of free surface flow is of great engineering significance in polymer processing like injection, blow molding and extrusion. However, its key technology for practical application remains to be difficult in Computation Fluid Dynamics (CFD). In this work, the finite element formulation of level set method for three dimensional free surface flow of a viscoelastic fluid is presented based on the unstructured mesh. The free surface is captured by using the level set approach and the Streamline-Upwind/Petrov-Galerkin (SUPG) scheme is introduced to minimize the numerical diffusion present in the discretized level set equations. A penalty method is employed to solve the flow equation and the constitutive equation with a decoupled algorithm. The computation stability is improved by using the Discrete Elastic-Viscous Split Stress (DEVSS) algorithm with the inconsistent Streamline-Upwind (SU) scheme. The performances of the formulations are demonstrated on a three-dimensional viscoelastic mold-filling flow problem and reasonable results are achieved.










spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net