SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Morphological Phase Behavior of PMMA and PC in PMMA/PC Binary and PP/PMMA/PC Ternary Blends
Minhee Lee, Seohwa Kim, Bong-Keun Lee, May 2004
The morphological phase behavior of polycarbonate and poly(methyl methacrylate) was studied in PMMA/PC binary and PP/PMMA/PC ternary blends prepared in a Haake batch mixer. Even though extensive research on the PMMA/PC blends has been performed, the miscibility between two polymers has not been clearly understood to date. The phase separation between two polymers has been consistently observed specifically the blends were prepared in molten state. In this paper, immiscible and miscible PMMA/PC phases were observed in PMMA/PC binary blends and PP/PMMA/PC ternary blends, respectively. Therefore, effects of the PP-matrix on the PMMA/PC miscibility were proposed in this study. In order to clarify the effects of the PP-matrix, various analyzing techniques including NMR, GPC, ICP and SEM were utilized. It was also found that the miscibility of PMMA and PC is highly affected by the processing parameters such as mixing temperature and mixing time in the presence of the PPmatrix.
Blends of Ethylene-Methyl Acrylate-Acrylic Acid Terpolymers with Ethylene-Acrylic Acid Copolymers
Nutthakan Pongrakananon, Nathaporn Somrang, Nathaporn Somrang, Pitt Supaphol, Manit Nithitanakul, Brian P. Grady, May 2004
The effect of methyl acrylate composition in ethylene-methyl acrylate-acrylic acid (E-MA-AA) terpolymers and acrylic acid content in ethylene-acrylic acid (E-AA) copolymers was investigated in blends of these two materials. The E-MA-AA terpolymer with 8 mole percent methyl acrylate was not miscible with any E-AA material no matter what the AA content, while the terpolymer with only 2 mole percent methyl acrylate was miscible, at least to some extent, with the E-AA copolymer at high acrylic acid contents. For the E-AA polymer material with the highest acid content, there was a synergistic effect for some properties at low E-MA-AA contents; the tensile strength was 10% higher than the value for the E-AA copolymer, even though the E-AA copolymer was much more stiff.
Study on Mechanical Properties of Dynamically Cured PP/Epoxy Resin Blends
Xueliang Jiang, Hua Huang, Yong Zhang, Yinxi Zhang, May 2004
In this paper, dynamical vulcanization process which usually used for preparation of thermoplastic elastomers was applied to PP/epoxy resin blend systems. Products of crosslinked epoxy resin particles finely dispersed in PP matrix were obtained, and were named as dynamically cured PP/epoxy resin blends. Maleic anhydride grafted PP (PP-MA) was used as a compatilizer. The influences of PP-MA content, epoxy content and reaction conditions on mechanical properties of dynamically cured PP/epoxy resin blends were investigated. Experimental results show that dynamically cured PP/epoxy resin blends have better mechanical properties than that of the PP/epoxy and PP/PP-MA/epoxy blends. By increasing epoxy resin content, flexural modulus increased significantly, while the elongation at break dramatically deceased. Impact strength was slightly affected by the presence of the epoxy resin.
The Processing and Performance of Polyvinyl Chloride / Ethyl-Vinyl Acetate Copolymer Blends
D.C. McConnell, G.M. McNally, W.R. Murphy, May 2004
Two grades of ethyl-vinyl acetate (EVA), each containing 26% (modified with 1.2% methacrylic acid) and 27% vinyl acetate (VAc) respectively, were blended at various compositions, with two grades of PVC. Mechanical analysis of these blends showed that the tensile and flexural modulus decreased and impact strength increased, with increasing EVA content. Rheological analysis for the blends showed only slight changes in shear viscosity with increasing EVA content, even at lower shear rates. DMTA showed a shift in glass transition temperatures of the PVC and EVA components within the blends, suggesting partial miscibility over the range of concentrations studied.
The Effects of Coupling Agents on the Mechanical Properties of Wood-Polymer Composites
P. Douglas, W.R. Murphy, G. McNally, M. Billham, May 2004
A range of wood-polymer blends, containing 40% w/w MDF sawdust (90-150 microns) was prepared using polypropylene (MFI 1.7 g/10min) and LDPE (MFI 2.2 g/10min). The blends were melt compounded using a Killion single screw extruder with a barrier type screw design. Two different coupling agents, maleic anhydride and a titanate compound, were incorporated into the blends during compounding at concentrations of 1 and 2%. Tensile, flexural and impact specimens from these blends were prepared using injection moulding. Mechanical analysis showed improved impact strength, tensile modulus and break strength for polypropylene-wood and polyethylene-wood blends containing 1% maleic anhydride.
Pigments for Food Packaging – A Regulatory Journey
Donna Jackson, May 2004
Understanding the U.S. FDA requirements for pigments or colorants in plastic food packaging involves a long journey. You’ve heard that the longest journey in the world begins with one step, and through this presentation you will take this first step in understanding FDA requirements. Few other food-contact substances have endured the regulatory twists and turns as experienced by colorants since the Food Additives Amendment of 1958. To prepare for such a journey, you first should be equipped with a background of the Federal Food, Drug, and Cosmetic Act, interpretations of the law and certain regulations, and an understanding of concepts and doctrines observed by the FDA. We will travel and see how the concepts of interstate commerce, adulteration, and misbranding govern the enforcements of FDA. We will define foods and food additives, as well as exemptions such as GRAS, prior sanctions, and housewares. We will continue our journey and travel through the history and regulations for colorants and color additives. We will finally visit the processes used to obtain new clearance through the threshold of regulation and food contact notifications.
Nanocolorants - More than Colored Nanoparticles
Arno J. Boehm, Alban Glaser, Oliver Koch, May 2004
Recently we have developed a novel class of colorants combining the advantages of both classical pigments and dyestuffs, the so-called NanoColorants. By nature these are nanocomposites consisting of hydrophobic dyestuffs molecularly dispersed and immobilized in highly crosslinked nanosized polymer particles prepared by a modified miniemulsion polymerization process. Whereas our initial development activities were focused primarily on a proper understanding of the basic polymerization process itself, and the incorporation of highly oleophilic dyestuffs, we have now extended our work to a number of other functional additives, ranging from optical brighteners and UV absorbers via copolymerizable fluorophores to all-organic opacifiers.
Using the Internet to Calibrate Color Spectrophotom Eters Back to a Traceable NIST: A Revolutionary Patented Technology for Color Control
Richard Knapp, May 2004
The Internet changes the way we conduct business strategically and on a day-to-day operational basis. For those managing color throughout a supply chain, the Internet offers revolutionary capabilities to improve your process and speed-to-market.Whether you’re a technician, lab manager, or quality control engineer, or whether you are responsible for color control within a multi-site enterprise, your challenges have several common denominators. First and foremost is that color makes a difference. It’s used as a litmus test for quality, which is compounded by extended supply chains around the world, increasingly compressed cycle times, and limits on resources and expertise in the field of color measurement and management.Another denominator is consumer demand for variety. To meet this demand, designers of apparel, toys, automobiles, consumer electronics, appliances and all types of household and office furnishings are increasing the number, frequency and complexity of their creative endeavors. While the products may be comprised of different raw materials (i.e. pigments, textiles, resins, metals, etc.), they do have one common denominator – color. Although color quality may be the ultimate discriminator, it’s often last on the list of priorities for designers, brand managers and manufacturing managers.
Color Matching Software from the Colorant Producer’s Perspective
Brian D. Coleman, Roger A. Reinicker, May 2004
The field of color science and color matching using mathematical models has come a long way in the past two decades. Today a number of companies can claim to have expertise in this field; each demonstrates this expertise in similar fashion by offering the coating, ink and plastic industries with colorimetry software targeted to make color matching and quality control accurate and faster. Still, however, issues remain. One’s ability to achieve accurate color matches can be compromised by differences in the type of substrates being measured, the form of the sample, the surface type and ultimately limitations of the colorant libraries themselves.In this paper, we will review the attributes of a colormatching program that was internally developed by a colorant producer. It will show that this software can be used as a predictor for application performance in the areas of heat stability and weathering. Lastly, the importance of accurate colorant libraries will be reviewed including an elaboration on issues associated with pigment dispersion.
Understanding the Effects of a Compounding Process on the Production of Co-Extruded Vinyl Sheet through the Utilization of Design of Experiments
Keith Effertz, May 2004
There are many ways to add color to the windows of your home. Methods include painting, powder coating, and use of capstock materials. One window manufacturer utilizes a co-extruded polyvinyl chloride (PVC) sheet, vacuum formed over a wood frame to provide a durable, low maintenance, and weatherable exterior. The market need for expanded color options has placed a need for understanding the key variables of success for this particular process. This paper will discuss the results of a Design of Experiment program conducted to determine the variables for successfully optimizing the production of the PVC sheet used in vacuum forming applications.
Perylimide Fluorescent Dyestuffs - Specialty Colorants with a Brilliant Future
Arno J. Boehm, Peter Blaschka, May 2004
Fluorescent colorants based on the perylene chromophore are well known for their exceptionally high photo-and thermostabilities, thus enabling their use in a number of demanding outdoor plastics applications. In this paper, chromophore design strategies leading to novel perylene based fluorophores covering additional coloristic regions, their unique property profiles, as well as recent advances in the development of state-of-the-art plastics applications are presented, ranging from emissive color filters for large scale LCD displays to fluorescent retroreflective sheets and films for traffic safety applications.
Degradation of Rubber Networks during the Ultrasonic Treatment
Victor V. Yashin, Avraam I. Isayev, Seok H. Kim, Chang K. Hong, Sang E. Shim, Jushik Yun, May 2004
The ultrasonic treatment of vulcanized rubbers under controllable conditions softens the rubber and creates a considerable amount of sol that makes possible a further reprocessing of the rubber. This paper demonstrates that a unified approach can be applied to analyze the numerous experimental data on structure of various unfilled and filled rubber vulcanizates ultrasonically treated under the continuous (with flow) and static (no flow) conditions. This approach is based on a model, which describes degradation of rubber network as a random scission of crosslinks and main chains due to the thermo-mechanical action of ultrasound.
Alternatives to Coatings for Automotive Plastics
Norm Kakarala, Tom Pickett, May 2004
Coatings or paints are generally pigmented polymeric dispersions or powders that are usually applied as a secondary process step to form a layer on the substrate. Eliminating coatings can drastically reduce the cost of the part as well as provide environmental advantages. In recent years there have been major advances in alternatives to coatings for automotive plastic parts. These advances are categorized into two main areas, material development and process development. From a materials perspective, new colorants and modifiers have been developed as additives to plastic resins that provide the aesthetic and physical and chemical properties required. From a process perspective, advances in process technology in areas of extrusion, co extrusion, injection molding, laminating films, and thermoforming of multiplayer sheets have been developed. This paper will examine these different alternatives to coatings for automotive plastic applications.
Structural Analysis of Components Molded Using Microcellular Foam Molding Process
Sameer Desai, Mohammed Ansari, W. Daniel Saunders, May 2004
It is known that microcellular foam molding process is viable process in reducing product cost, process cost and improvement of dimensional stability. Reducing the part weight negatively effects certain properties of the material. Specific effect on the property will determine applicability of such process for a given part design. In order to determine the applicability of such process it is important to use Finite Element Analysis (FEA) to verify designs before making any prototypes. The traditional FEA is used for solid materials to predict component performance. There is little understanding of how traditional Finite Elemental approach will work using microcellular foam material properties.The traditional solid plastic material is tested and correlated through testing and simulation. The same components molded using microcellular foam process will be tested and simulation method will be applied to understand if the same correlation can be obtained.
Abrasion Resistance Requirements for Automotive Interior Soft Skin Materials
Tom Pickett, May 2004
Interior automotive applications such as instrument panel (IP) topper pads, door trim, arm rests, and seats require soft skin materials that have good abrasion resistance. With the OEM’s move towards a polyvinyl chloride (PVC) free interior, materials such as thermoplastic polyolefin (TPO), thermoplastic polyurethane (TPU), thermoplastic elastomers (TPE), and polyurethanes have replaced PVC. The new materials have to meet the original equipment manufacturer (OEM’s) abrasion resistance requirements. This paper examines the OEM’s abrasion requirements for soft skin materials used in automotive interior applications and reveals the concern suppliers have with these requirements.
Characterizing Scratch and Mar Performance of Molded-In-Color Engineered Polyolefins for the Automotive Industry
Sudhir Bafna, Mitesh Shah, Dave Edge, May 2004
Various new and modified test methods are proposed to characterize the scratch and mar performance of molded-in-color [MIC] engineered polyolefins [EPO] for the automotive industry. Mar is characterized by gloss retention after abrasion in a crockmeter. Scratch is usually characterized by the Ford 5-Finger Scratch Test. However, scratch can also be characterized by the instrumented microscratcher. A method to quantify chip resistance is proposed. These test methods are illustrated by a comparison of the performance of a new MIC EPO [INDURE™] against that of conventional TPOs.
Peroxide Initiated Grafting of Alkoxysilanes from Poly(Isobutylene-Co-Para-Methylstyrene) Utilizing a Co-Rotating Twin Screw Extruder
Raymond L. Tabler, Thomas A. Peitz, Anne K. Shim, May 2004
Reactive processing of various alkoxysilanes with poly(isobutylene-co-para-methylstyrene) copolymers in a co-rotating, intermeshing twin-screw extruder produced novel, curable, grafted elastomers with excellent barrier properties. One of these polymers is currently used as a coating in a commercial application. The effect of formulation, screw design, and processing conditions upon polymer properties, economics, and side reactions were studied. Also investigated was how grafting level and efficiency are influenced by a number of inhibitor additives.
Achievable Weld Strengths for Various Thermoplastics Using the Clearweld® Process
Nicole M. Woosman, Robert A. Sallavanti, May 2004
The ability to join thermoplastics using traditional welding techniques has been studied extensively. Clearweld® is a relatively new through-transmission laser welding technique for welding infrared transmissive plastics. The range of plastics that are weldable using the Clearweld process has not been well documented.Various thermoplastics, including polycarbonate, PMMA, polysulfone, PETG, LDPE, and PVC, were welded using the Clearweld process to determine the capabilities and limitations of the process. The evaluation was based on tensile strengths of welded butt joints. The effect of material properties and quality of the welded parts was also evaluated to enable the engineer to design joints for maximum strength welds.
The Suitability of Polyvinyl Chloride / Ethylene Vinyl Acetate-Carbon Monoxide Terpolymer Blends for Medical Devices
D.C McConnell, G.M. McNally, W.R. Murphy, May 2004
An ethylene vinyl acetate-carbon monoxide terpolymer (EVA-CO) (Elvaloy® by Du Pont) was blended with two PVCs at various compositions. Several commercially available medical grade plasticised PVCs were also tested to assess the suitability of the blends for the current market.Mechanical analysis showed that the tensile and flexural modulus of the blends decreased significantly with increasing EVA-CO content, with the impact strength greatly improved. DMTA showed a single glass transition temperature (Tg) between that of the PVC and EVA components indicating complete miscibility over the range of concentrations studied. Rheological analysis showed only slight changes in shear viscosity with increasing EVA-CO content. The properties of most of the PVC/EVA-CO blends were similar to those of commercially available plasticised PVCs.
Coextrusion of TPU and BaSO4 Filled Medical-Grade TPU
Guangyu Lu, Dilhan M. Kalyon, Iskender Yilg?r, Emel Yilg?r, May 2004
Coextruded products for the medical device industry, involving layers of filled and unfilled polymers, are difficult to fabricate, especially due to the various degradative processes taking place especially when various stabilizers are not included in the medical-grade formulations. Significant differences in the degradation behavior and the subsequent rheological behavior of unfilled and BaSO4 filled TPUs generally give rise to severe fluctuations at the interfaces and poor coextruded products. It is shown here that the shear viscosity values of the filled and unfilled TPU need to be matched under the extrusion conditions to obtain acceptable coextruded medical products.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net