SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Batch and Continuous Processing of Protein Films
Harshawardhan V. Pol, Christopher S. Cavin, Amod A. Ogale, Paul L. Dawson, May 1999

This research is directed at the thermal processing and physical characterization of films derived from natural proteins, viz. soy, corn-zein, egg white and beef-broth. Twin screw extrusion was employed for pre-process compounding of proteins and the plasticizer. The thermal processing was accomplished with compression molding (a batch process) and extrusion (a continuous process). Single component soy films were light yellow in color, translucent, flexible and well consolidated, with a thickness of approximately 300µm. The tensile strength of these films was about 3 MPa. Continuous chill-roll film extrusion was also carried out and the process is being refined.

How to Work with the Trade Press - Eight Keys to Getting Your Releases and Papers Published
Harry Urban, May 1999

Nothing can be more rewarding (or frustrating) than working with a trade magazine's editorial department. A solid working relationship with the trade press enables individuals and companies to deliver their business and technological news, ideas, accomplishments and opinions to the masses in a timely manner and with relative ease. A basic understanding of how trade press editors perform their duties and how editorial departments function allows business marketers to achieve their goals. What follows are eight key points that will help you put your best foot forward in the trade press.

Sheet Extrusion of Thermoformers
Walter B. Virginski, K. Christian Barnwell, May 1999

Thermoformers can achieve many advantages by producing sheet in house. Sheet extrusion systems for in-line thermoforming and off line use are available in a wide range of sizes to suit almost any consumer or industrial thermoformed product application. The benefits of in-house sheet extrusion will be reviewed. Thick cut to length, thin roll stock, and in-line applications will be discussed. The methods of determining the size of the required sheet extrusion line and the capital equipment requirements will be used to determine the cost per pound of extruded sheet to enable you to calculate your savings.

Advances in the Fabrication of UHMWPE for Joint Prostheses
T. Vasilos, A. Crugnola, J. Hamilton, May 1999

It is well recognized that Ultrahigh Molecular Weight Polyethylene(3.6x106) (UHMWPE) has been used as a component in joint prostheses for over 95 years. Essentially all fabricated UHMWPE during this period has exhibited incomplete fusion and/or severe molecular weight degradation. It is most likely that these features have compromised the potential wear resistance as well as the mechanical properties of this material. By fabricating UHMWPE in a vacuum, complete densification without fusion defects while maintaining the 3-4 million starting molecular weight was achieved. This paper discusses the results of the vacuum fabrication of UHMWPE.

Hard Tools from Soft Tools via PowderFlo Technology
R. van Weeren, J. Schoonover, M. Dehi, M. Zedalis, May 1999

The ability to procure rapid tooling for plastic molding and other near-net shape forming processes remains one of the largest technical challenges facing our manufacturing industry today. Advances in rapid prototyping and desk top manufacturing e.g., selective laser sintering, solid free forming, ....., etc have cut lead-times by as much as and are capable of producing relatively precise tooling which requires minor secondary machining. This paper presents a new technology developed by AlliedSignal which is capable of fabricating metal and ceramic components via powder injection molding, as well as the added capability of producing hard tooling from soft tooling.

The Use of Chemical Coupling Agents to Improve the Performance of Polymer Bonded Nd-Fe-B Magnets
Jun Xiao, Hyun Seog Kim, Joshua Otaigbe, Troy Tacke, May 1999

Due to their poor heat-resistant properties, polymer bonded magnets are limited in their applications in aggressive environment. By using high temperature engineering polymers the heat-resistance of polymer bonded magnets can be significantly improved. However, the extreme tendency for thermal oxidation of Nd-Fe-B alloy powder limits the use of high temperature polymers. This paper discusses the application of silane coupling agents to the thermoplastic polymer bonded Nd-Fe-B magnets. The results show that after the treatment of coupling agent, the thermal stability and oxidation/corrosion resistant properties of the Nd-Fe-B alloy powder at high temperature improved significantly, making it usable for high-temperature processing and high-temperature application. An enhanced wetting of the Nd-Fe-B particles in polymer matrix has been observed. The bonding between the Nd-Fe-B powders and polymer matrix was improved by the coupling agents. In turn, the enhanced bonding between the powder and the polymer dramatically increased the mechanical properties of polymer-bonded Nd-Fe-B magnets.

When Does Plastic Yield Occur?
Chaodong Xiao, Jack Huang, Andrew Dafforn, Albert Yee, May 1999

The yield point of a ductile plastic material is commonly taken to be the maximum in the engineering stress-strain curve conducted in a constant cross-head rate experiment. With most plastic materials permanent strain actually occurs well before the maximum point is reached. In metals the point where permanent strain occurs can be determined by performing loading-unloading experiments. In plastics the determination of this point must also take into account the time under load because plastic deformation processes are time/rate dependent. There is a corresponding change in the microstructure when permanent deformation occurs. Uniaxial tensile deformation experiments on a polyacetal copolymer are used to illustrate these points. Scanning electron microscopy is used to show that permanent microstructural deformations develop over time. In polyacetal the deformation involves the formation of voids and fissures.

Designing Toughened Plastics through Control of Morphology and Properties of the Toughening Phase
Albert F. Yee, Jianguang Du, Michael Thouless, May 1999

The fracture resistance of homogeneous plastics can be increased by the incorporation of a second phase which may be an elastomer, a thermoplastic, or even an inorganic material. The choice of the second phase depends on the intrinsic deformation mechanisms of the host matrix. The microstructure of the toughening phase may have significant effects on the toughening efficiency. The inclusion of a third phase in the toughening phase is often desirable for facilitating cavitation. The desirable properties and morphologies of the toughening phase for triggering such mechanisms are discussed in this paper.

Design Tools for Rapid Thermal Cycling
Xiaorong Xu, Emanuel Sachs, Samuel Allen, Michael Cima, May 1999

Mold temperature control is very important in injection molding, influencing both the part quality and production rate. The solid freeform fabrication (SFF) processes such as 3D Printing have demonstrated the ability to construct complex internal channels inside the tool to improve the process temperature condition. By running the hot and the cold oil alternately through the conformal channels, the mold surface temperature is well controlled so that isothermal filling and rapid cooling are achieved for the high part quality and the short cycle time. A low thermal inertia tool and a rapid thermal cycling system are being developed at MIT. This paper discusses models and design rules involved in the design of tools for rapid thermal cycling.

Scratch Resistance and Material Property Relationship in Polymers
C. Xiang, H.-J. Sue, J. Chu, May 1999

The scratch/mar damage in polymers is a complicated mechanical process and cannot be directly related to material properties of polymers. Scratch performance of materials is determined both by scratching stress field and by various material properties. Testing methods, which include two types of scratch tests and a depth sensing indentation test, are described. A scratch model is applied to simulate the scratch process under constant load. The roles of basic material properties, i.e. Young's modulus, yield stress, tensile strength, friction coefficient, hardness, elastic recovery on scratch resistance of polymers are addressed. Approaches for improving scratch resistance in relationship to material properties are discussed.

Preparation of Polypropylene/Acrylonitrile-Styrene Copolymer Alloys by One-Step Reactive Blending
Xu-Ming Xie, YaYun Liu, Jun Feng, Xiang-Yang Tai, Zeng-Min Zhang, May 1999

The compatibilization of PP/AS blends through the addition of peroxide (DCP) was investigated. The in-situ formed grafting copolymers of PP-g-AS and AS-g-PP were then characterized by FTIR. The optimum blending condition was obtained. The maximum degree of grafting was found to be 6wt % for the 50/50 PP/AS/DCP blend. PP was more degradable than AS in the presence of peroxide at high temperature. SEM of PP/AS/DCP and PP/AAS/DCP showed a fine dispersion and a smaller domain size of the dispersed-phase particles implied that the in-situ formed grafting copolymer acts as a compatibilizer to reduce the interfacial tension between the PP and AS phases.

Unsaturated Polyester and Vinyl Ester Resins in Vacuum-Assisted Resin Transfer Molding - SCRIMP
Huan Yang, L. James Lee, May 1999

Seemann Composite Resin Infusion Molding Process (SCRIMP) is a room temperature vacuum-assisted resin transfer molding technique developed in recent years for high strength composite fabrication. This process is being used for marine, civil infrastructure, transportation and defense applications. Unsaturated polyester and vinyl ester resins are the two major resins used in SCRIMP today. The objective of this study is to compare the resin moldability and properties of SCRIMP molded composites based on these two kinds of resins. Effects of resin type, initiator, promoter, inhibitor and retarder on the reaction kinetics, chemorheological changes and resin shrinkage were studied by using DSC, RDA and dilatometry respectively. The surface quality of the molded samples was measured by a profilometer. A kinetic model in conjunction with a heat transfer model was developed to simulate the SCRIMP process.

Simulation and Experimental Studies of a Non-Return Valve Performance during Injection Molding
Chris Zook, A.I. Isayev, May 1999

This paper presents the results of the simulation of the dynamic behavior of a non-return valve during the recovery and injection stage of the injection molding cycle. A generalized Newtonian fluid model is used to simulate the flow with FLUENT software. The results of the analysis determine pressure drop, time taken for the valve to open during the recovery stage and time taken for the valve to close during the injection stage. The simulation results are compared with experimental data for three different thermoplastics including HDPE, PC and Nylon-66. Experimental data is obtained for several injection molding runs with pressure transducers installed in the barrel. In addition, the forces that occur on the ring during each molding stage and the relative rotational speeds between the valve and ring during the recovery stage were calculated.

A Practical Approach to Polymer Rheology for Quality Control
Donald E. De Laney, James F. Reilly, May 1999

Rheological data obtained under the conditions of temperature and shear existing in conversion processes are required for the prediction of the performance of polymer resins in those processes. The capillary rheometer simulates the conditions seen in conversion processes and can be used to produce pertinent data. The ± 3 ? variation of the viscosity verses shear rate curves (over the range of shear rates seen in a process) for a resin or compound, can be used as a tool for monitoring consistency and predicting processability. When the measured viscosities for a material fall within the tube" formed by the upper and lower limits of the variation the product is consistent. If not the way the curve moves out of the "tube" will provide information on the root causes of the product variation. This talk discusses the application of the "tube" concept to a range of filled and unfilled resins using an automated capillary rheometer system that makes the "tube" concept practical for application in quality assurance and process control."

A Practical Approach to Polymer Rheology for Quality Control
Donald E. De Laney, James F. Reilly, May 1999

Rheological data obtained under the conditions of temperature and shear existing in conversion processes are required for the prediction of the performance of polymer resins in those processes. The capillary rheometer simulates the conditions seen in conversion processes and can be used to produce pertinent data. The ± 3 ? variation of the viscosity verses shear rate curves (over the range of shear rates seen in a process) for a resin or compound, can be used as a tool for monitoring consistency and predicting processability. When the measured viscosities for a material fall within the tube" formed by the upper and lower limits of the variation the product is consistent. If not the way the curve moves out of the "tube" will provide information on the root causes of the product variation. This talk discusses the application of the "tube" concept to a range of filled and unfilled resinsusing an automated capillary rheometer system that makes the "tube" concept practical for application in quality assurance and process control."

Blends of Ethylene/Styrene Interpolymers and Other Polymers: Benefits in Applications
C.F. Diehl, M.J. Guest, B.I. Chaudhary, Y.W. Cheung, W.R. Van Volkenburgh, B.W. Walther, May 1999

Ethylene Styrene Interpolymers (ESI) exhibit compatibility with a wide range of polymers due to their inherent combination of olefinic and styrenic functionality. In particular, blends of ESI with atactic polystyrene, and polyolefins including polypropylene, have been found to offer interesting and unique combinations of performance properties. Fundamental blend morphology, structure/property relationships, and processability of ESI blends are discussed. Examples and benefits of such blends in applications such as molded articles, films, and foams are discussed.

Effect of Kneading Block Tip Clearance on Performance of Co-Rotating Twin-Screw Extruders
Gary S. Donoian, John P. Christiano, May 1999

Over the years the design of the co-rotating intermeshing twin-screw extruder has evolved to meet the processor's never ending need for improved performance and processing efficiency. The most significant change in recent years has been the introduction of the high speed high torque machines. These high speed extruders, while producing increased throughput and reduced average residence time, also generate significantly higher shear rates and exit melt temperatures. This paper examined the effect of kneading block tip clearance on machine performance as a function of screw speed and specific rate. Machine performance will be defined in terms of power consumption, extrudate melt temperature, residence time distribution, melt index, and mix quality.

Modification of Cement Using Post Industrial Recycled Acrylonitril Butadiene Styrene (ABS) Latex Powder
Artemio Palos, Nandika Anne D'Souza, May 1999

Polymer latex modification of cement has increased the ductility of the resultant concrete. However, practical application of the concrete is limited since latex is used in a liquid form. In contrast, we have examined use of post industrial Recycled Acrylonitrile Butadiene Styrene powder (r-ABS). Pullout tests indicate an increase in adhesive bond strength between the polymer-modified mortar and steel re-bar. Thermogravimetric analysis is carried out to examine the influence of the latex on the kinetics of degradation. The results indicate a novel approach of using r-ABS in cement modification.

Thermal Aging Effects on Transport Properties of Polymeric Membranes for Fuel Cell Applications
Julie T. Dvorkin, Ronald G. Kander, May 1999

Although solid polymer electrolyte fuel cells have been considered as environmentally attractive power sources, to date little work has been done on the durability of eletrolyte membranes. It is conceivable that time and prolonged exposure of membranes to elevated temperatures will significantly diminish the effectiveness of electrolyte cells. The goal of this study is to investigate and compare thermal aging and morphology effects on transport properties, such as ion diffusion coefficients and permeability parameters of the membranes for hydrogen ion transfer, of commercially available Nafion® and Dias® membranes and experimental phosphorus containing polyimide membranes. The emphasis of this paper is placed on the design and properties of a diffusion cell necessary for hydrogen ion measurements.

Thermoporometric Characterization of PHPMA Hydrogels
M.C. Bergeron, M. Iza, S. Woerly, S. Kaliaguine, M. Bousmina, May 1999

Differential Scanning Calorimetry (DSC) has been used to determine the pore size and pore size distribution of a surgical poly(N-2-hydroxypropyl) methacrylamide (PHPMA) hydrogel. The dry PHPMA (xerogel) was swollen in H2O and the pores size of the gel was determined from the solidification thermogram of H2O obtained at very slow cooling rate. The shift in the solidification equilibrium temperature of a known condensate held inside a porous material is pore size-dependent and enables the deduction of pore radii distribution of the material. The results obtained from this technique were compared with those obtained by B.E.T (Brunauer, Emmett and Teller).










spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net