SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Conference Proceedings
In-Line Monitoring of Particles in a Polymer Melt during Extrusion Using a Scanning Particle Monitor
L.D. Ing, S.T. Balke, N. Stoev, H. Tamber, M. Planeta, May 2001
The development and application of an in-line scanning particle monitor is described. The monitor consists of an interface, telecentric lens, CCD camera, and computer. The interface provides a window into the process through which the optical system obtains images of particles, such as microgels, as small as eight microns in size. An exceptionally novel aspect is that the monitor can focus upon any depth in the stream to provide images of particles across the flow. Programmable image analysis software yields information on particle concentration, size, color, shape and velocity. The system is useful for both quality control and research.
The Effect of Die Entry Flow on the Rheology of Linear Polymers
Justin R. Barone, May 2001
It is well known that secondary flow will occur in the stagnant area near the die entrance of an extrusion die. The secondary flow may produce large-scale waviness on the extrudate surface if it propagates into the die land. For polymers that exhibit well-defined stick-slip transitions, propagation of the entry flow into the die is usually facilitated by slip flow. In this paper we show how the entry flow can quicken the sharkskin dynamics while only having a subtle effect on the rheology. This phenomenon is observed first hand using a flow birefringence technique. It is also shown how the effect of the die entry angle changes the slip behavior.
Temperature Rise in a Single Screw Pump-Extruder
Gregory A. Campbell, Hongying Cheng, Chicheng Wang, Matthew Bullwinkel, Mary Ann te-Riele, May 2001
The focus of this investigation was to determine the effect of barrel rotation and screw rotation on the flow rate and viscous dissipation inside the screw pump-extruder. The experimental results can be summarized by noting that the pumping capacity of the device was independent of which element was rotated at constant angular velocity and that barrel rotation generated higher temperature rise than screw rotation. Also this analysis suggested that a large amount of viscous dissipation inside this extruder arises from the clearance flow. A new analytical model was proposed to evaluate the viscous dissipation for screw rotation and has good agreement with data.
Structure Development during Film Blowing
M.D. Bullwinkel, G.A. Campbell, D.H. Rasmussen, C.J. Brancewitz, May 2001
The use of simultaneous on-line SALS (Small Angle Light Scattering) and IR (Infrared) temperature measurements to study structure development during tubular blown film extrusion of LLDPE is described. SALS patterns were recorded at various vertical positions along the bubble. For LLDPE, an undeformed spherlulitic structure is formed if the stress level during processing is not too high. The change in average scattered intensity with axial position can be described using multiple step crystallization process. The first step accounts for crystal growth and corresponds to the well-known temperature plateau. The later processes may reflect secondary crystallization and orientation processes. By allowing the processor to track the crystallization process, this on-line SALS system is potentially a useful tool for monitoring process-property interactions.
High Shear Rheology of Calcium Carbonate Slurries
Gregory A. Campbell, Michael E. Zak, May 2001
Several sizes of calcium carbonate were investigated because of their extensive use in the polymer industry as fillers. The investigation focused on developing an analytical tool which would lead to understanding and predicting the flow characteristics of slurries which have a Newtonian continuous phase but have high enough filler concentration to exhibit shear thinning or power law characteristics. We focus on concentrations where the initial yield behavior in not dominant A new function was found which linearly correlates the power law constant, n, to the concentration of the filler. The behavior of this function suggests that the Newtonian to Power-law behavior may be dominated by percolation processes.
Effect of Oil Additives and Injection Molding Process Parameters on the Tensile and Impact Energy of Polypropylene
Gregory A. Campbell, Sara E. Campbell, Matthew Bullwinkel, Joseph Savoka, Lona Ragona, Charles Mosier, May 2001
A factorial designed experiment was run to evaluate the interactions of processing parameters, polymer chemistry and proton irradiation on the tensile and impact properties of polypropylene. Polymer chemistry was the greatest contributor to differences in material properties. Base flake polymers with nucleating agent gave the best tensile properties, followed by the base flake polymer alone, the alternative base polymer and the polypropylene with oil, in that order. Polymers with oil gave the best impact properties with an increase in impact energy of 6000 %. Irradiation had significant impact on most polymer systems with some irradiation/processing interactions. In general proton irradiation was beneficial to tensile properties and detrimental to impact properties. Irradiation/processing parameter interactions were present and were highly dependent on the material chemistry and the material property tested. Those polymers with nucleating agent have a drop in material properties across the experiment, suggesting a time dependent material property change.
Low-Velocity Impacts in Continuous Glass Fiber/Polypropylene Composites
David Trudel-Boucher, Martin N. Bureau, Johanne Denault, Bo Fisa, May 2001
The low-velocity impact behavior of a continuous glass fiber/polypropylene composite has been investigated. Optical microscopy and ultrasonic scanning were used to determine the impact-induced damage. Damage mechanisms were found to be matrix cracking, delamination and a small amount of fiber breakage at the edge of the indentation on the front face. Tensile and flexural tests showed that the post-impact residual strengths and flexural modulus decreased with the incident impact energy, whereas effect on the post-impact residual tensile modulus was negligible. The dynamic fracture toughness was evaluated from the critical strain energy release rate during impact of specimens with an embedded insert used to simulate a delamination. Results are compared with fracture toughness values obtained during steady crack growth.
Model-Based Predictive Control of a DC Motor for Screw Rotation
Rickey Dubay, Bambang Pramujati, May 2001
Electric injection molding machines are becoming more common in the manufacture of high precision plastic components for pharmaceuticals, optics, and surgical tools. Good control of the screw rotating speed is vital when using multi-setpoint and ramp setpoint speed profiles during screw recovery. In addition, the controller should be adaptable for different plastic materials for minimizing overshoot and achieving a fast setting time. A predictive speed controller was developed for a scaled DC electric motor using an inertia and viscous friction loading for variable setpoint trajectories. Good control performance was obtained using an unconstrained optimization approach for determining the control moves.
Plastic Media as a Mold/Screw Cleaning Alternative
John M. Todd, May 2001
Maintaining molds/screws integrity through regular thorough cleaning is a key factor in producing quality plastic molded parts. The ability to clean quickly and economically (while being aware of environmental issues) is a challenge and a goal for all molders. Non-abrasive blast cleaning utilizing plastic media is the answer to all of the above. Not only is plastic media blasting quick/efficient, it will not alter/damage the mold or screw surface, round/erode corner and edges, or alter tolerances. In addition, all this can be attained with a product that is completely non-hazardous, which makes disposal a non-issue. All of the above has been documented through years of research. Data has been gathered on cleaning times, equipment and material costs with consideration for waste disposal costs comparing hand cleaning, chemical cleaning, and plastic media blast cleaning.
Rigid Particle Toughening of Aliphatic Polyketone Polymer
W.C.J. Zuiderduin, C. Westzaan, H. Huetink, R.J. Gaymans, A.A. Smaardijk, May 2001
In this paper the influence of precipitated calcium carbonate (PCC) particles on the toughening of aliphatic polyketone has been studied. It has been shown that the addition of the PCC particles increase the stiffness of the system and at the same time increase the impact resistance. The impact energy at room temperature was increased from 10 kJ/m2 to 80 kJ/m2. The brittle-to-ductile transition temperature (TBD) was lowered considerably by increasing the calcium carbonate concentration. The debonding of the calcium carbonate particles prior to the yield stress is the dominating step in the toughening mechanism.
A Novel Polymeric Coating for Enhanced Ultrasound Imaging of Medical Devices
S. Mehdi Tavakoli, Ewen J.C. Kellar, Dariush Nassiri, Anton E. Joseph, May 2001
Fine needle aspirates, biopsies and drainage procedures under ultrasound guidance are common, in most hospitals. A dynamic novel coating, consisting of a hydrophilic polymeric matrix and a bubbling agent, has been developed for accurate entry and positioning of the needle. The bubbling agent reacts with tissue fluid as the needle penetrates and produces bubbles within and on the surface of the coating, increasing the backscattering capacity of the coating and generating a brighter image of the device under ultrasound. Coated biopsy needles have been successfully used for in-vitro trials using a tissue-mimicking phantom, and in an isolated animal liver.
Mechanical Testing and Characterisation of a Steel Adherend Bonded Using an Automotive Grade Epoxy Adhesive
S. Mehdi Tavakoli, Ewen J.C. Kellar, Cosmas Vlattas, May 2001
Single lap shear specimens were prepared using a zinc coated steel adherend and an epoxy adhesive and evaluated by static and fatigue tests. Joints fatigue tested in air failed in a cohesive manner with some zinc delamination at the highest load. Joints tested in water failed through a combination of adhesive and cohesive failure. SEM, EDX, and FTIR analyses enabled a detailed characterisation of all the components of the epoxy system. Despite a generally homogenous distribution within the bulk of the adhesive, an interfacial layer, devoid of particulates has been identified next to the zinc layer.
Very High Molecular Weight Polyethylene Obtained through Heterogeneous Cp2ZrCl2 on Aluminas
Moacir de Alcantara, Maria F.V. Marques, May 2001
The heterogenization of Cp2ZrCl2 on different aluminas, under distinct thermal and chemical pre-treatments, produced PEs of very high Mw. Some polymerizations achieved high activities, compared to the homogeneous catalyst. The aluminas owned distinct surface properties. and their different themml pre-treaUnents showed great influence on the supported catalyst activities. Methylalmninoxane (MAO), trinlethvlaluminimn (TMA) mad another cheaper agent were utilized as chenfical pre-treatments on the calcined aluntinas. Their activities were compared. The cheaper agent showed an excellent catalyst activitv.
Polyethylene Produced by Polymer-Supported Cp2ZrCl2/TIBA/MAO Catalyst System
Patricia Aragão do C. Junior, Renata Barbosa M. Costa, Fernanda M.B. Coutinho, Grupo de Polímeros, May 2001
Heterogeneous metallocene catalyst systems have been developed in order to be employed in industrial plants of polyolefins producing with conventional Ziegler-Natta catalyst systems. In this work polyethylene was synthesized using Cp2ZrCl2 catalyst system based on pretreated organic supports employing triisobutylaluminum (TIBA) as impurities scavenger and methylaluminoxane (MAO) as external cocatalyst. The heterogenization of the catalyst caused no significant effect on polymers characteristics. However a slight tendency of increasing on molecular weight and polydispersity was observed.
Development of a Notebook PC Housing by Using MMSH (Momentary Mold Surface Heating) Process
Dong-Hak Kim, Myung-Ho Kang, Young Ho Chun, May 2001
MmSH (Momentary Mold Surface Heating) process is an invention that heats only the mold surface over 400°C in few seconds with gas flame and cool it down very quickly again[1,2]. Practically it was tried to produce a shiny surface of 98% light reflecting of notebook PC housing of 20% glass fiber reinforced Polycarbonate. In addition to the outstanding surface quality, physical properties such as falling dart impact strength and heat resistance were improved. And it was carried out successfully with simple attached equipment and specially designed MmSH Mold which is to supply the gas fuel and air between the two parts of mold. The results of injection-molded notebook PC housing with MmSH Process will be discussed in this paper.
The Effect of TiO2 Pigment Particle Size and Masterbatch Rheology on the Dispersion Performance of TiO2 Pigment within the Polyethylene Blown Film Process
G.P. Milligan, G.M. McNally, W.R. Murphy, M. Leathem, May 2001
During the extrusion of pigmented blown film products, film quality can sometimes be affected by inadequate pigment dispersion and in some cases excessive melt build-up around the die lips during extended production runs. These problems are particularly evident during the extrusion of white (TiO2) pigmented films. The rheological characteristics of a range of commercially available titanium dioxide based masterbatches, with different polyethylene carrier polymer melt flow indices, were investigated using a dual capillary rheometer over the temperature range of 190°C to 230°C. Scanning electron microscope studies were performed on the individual masterbatches to determine pigment particle size and the degree of pigment agglomeration. Blown film extrusion trials, using a Killion blown film line, were carried out to determine film quality. The results showed that the masterbatches containing relatively large individual particle size caused more difficulties during film extrusion. Rheological analysis showed that the pigment masterbatch with the higher shear viscosities gave improved pigment dispersion in the film, and improved agglomerate breakdown during the extrusion process.
Revolutionizing Runner Designs in Hot & Cold Runner Molds
John P. Beaumont, May 2001
A next generation runner design is proving to yield unprecedented consistency in multi-cavity molds as well as providing new process aids which can control distribution of melt conditions in a cavity. This paper explains how variations in melt conditions are created in cold and hot runner molds and how they impact Cpk, productivity and molded product characteristics. These variations are rarely understood or appreciated, yet are possibly the most significant influencing factors in the successful production of injection molded products today. A next generation runner is revealed which provides the performance of a small cavitation mold, improves product consistency, and increases productivity and process control of injection molding to a new level.
Structure and Properties of Extruded Corn Starch/Polymer Foams
Randal L. Shogren, J.L. Willett, May 2001
Expanded foam peanuts made from blends of thermoplastic starch and various polymers were studied in order to better understand relationships between structure and properties in these systems. Some polymers such as polylactic acid (PLA) gave high radial expansion while others such as EastarBio polyester actually inhibited expansion compared to the control. Poly(hydroxyester-ether) (PHEE) was most effective in reducing friability of normal corn starch foams although there was still some dusting at low humidity. High amylose starch/PHEE foams had zero friability indicating that corn starch chemical modification is not necessary to confer good physical properties. Low friability seems to be correlated with a high surface concentration of polymer (as measured by XPS) and with polymers having a high degree of energy dissipation (low crystallinity, Tg near room temperature).
Blends of Starch with Poly(Vinyl Alcohol)/Ethylene Copolymers for Use in Foam Containers
Geoffrey A.R. Nobes, William J. Orts, Gregory M. Glenn, Gregory M. Gray, Micahel V. Harper, May 2001
The use of foamed polymer packaging such as polystyrene (PS) cups, bowls and clamshells has decreased in recent years because of perceived environmental disadvantages. Blends of starch with poly(vinyl alcohol-co-ethylene), PVOH, a degradable, water-resistant polymer, were processed into viable alternatives to PS providing degradable polymers from renewable resources. Modulated DSC and X-ray crystallography were used to characterize the miscibility and morphology of extruded starch/PVOH blends that contained a series of plasticizers. These included combinations of water, glycerol, triacetin, citrate esters, and amino acids. The optimal blend formulation, based on miscibility, strength, aging characteristics, and capability to replace PS foam was--60-65% wheat starch, -25 -30% PVOH, and -5-10% plasticizer.
Numerical Investigation of the Continuous Electronic Laminate Processing
Mingjun Yuan, Tim A. Osswald, Jose M. Castro, L. James Lee, May 2001
The continuous electronic laminate processing method is a novel method which addresses the major industrial concerns: solvent elimination, void removal, dimensional consistency, and economics. To better understand its process mechanism, modeling and numerical simulation is implemented on resin flow, heat transfer, and conversion process. In this study, the problem of resin flow and heat transfer through the composite channel is analyzed. The channel is assumed to be a two-layer system, one filled with a resin saturated porous medium and the other with a clear resin. The Brinkman - Forchheimer - Extended Darcy equation is utilized for the glass fiber matrix porous region. The viscosity effect accompanied by the resin curing process is coupled into the flow model. For the heat transfer analysis, a uniform heat flux is imposed at the copper plate, and the heat diffusion effect in resin cure is also considered. The laminate thickness variation and the curing degree profile can also be obtained using the numerical simulation.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net