SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author


Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
M.D. Sanchez-Garcia , E. Gimenez , M.J. Ocio , J.M. Lagaron, May 2008

It is well-known that the nanocomposites technology can significantly enhance among others the thermal mechanical and barrier properties of plastics. It is also known that most bioplastics including the thermoplastic biopolymers have lower than desired levels for certain properties which makes their use in certain packaging applications problematic. The combination of active technologies such as antimicrobials and nanotechnologies such as nanocomposites can synergistically lead to bioplastic formulations with balanced properties and functionalities for their implementation in packaging applications. The present work presents the development and characterization of novel nanocomposites of polycaprolactone (PCL) with enhanced barrier properties and with controlled-release of biocide natural extracts.The antimicrobial nanocomposites of biodegradable materials were prepared in solution by a casting method.The morphology of the biocomposites was visualized by transmission electron microscopy (TEM) and by Atomic Force microscopy (AFM) the thermal properties were investigated by differential scanning calorimetry (DSC) and the solubility and kinetics of released biocide were determined by Attenuated Total Reflection Fourier Transformed Infrared (ATR-FTIR) spectroscopy. Water and limonene barrier properties were also enhanced in the biocomposites.

Stephen P. McCarthy, May 2008

Biopolymers are generally defined as polymers that are found in nature derived from nature or utilized as medical implants. Polymeric biomaterials which are utilized as medical implants are typically characterized for enduse performance as well as processability. While lactic acid is found in the human body polylactic acid is derived from natural resources and utilized as medical implants. This paper will utilize poly(lactic acid) as an example of a bioplastic where the morphological and isomeric structure has an influence on end-use properties such as mechanical properties biodegradability and biocompatibility.

J. L. Willett, May 2008

Starch a low-cost annually renewable resource is naturally hydrophilic and its properties change with relative humidity. Starchƒ??s hygroscopic nature can be used to develop materials which change shape or volume in response to environmental changes (eg humidity). For example starch-based graft copolymers have been produced using reactive extrusion for potential superabsorbent and hydrogel applications. Besides absorbing large quantities of water some of these copolymers display large volume changes in aqueous alcohol depending on solvent quality. Other examples include starch-poly(methyl acrylate) graft copolymer films which shrink at high humidities. Various levels of shrinkage can be triggered in response to changes in relative humidity. (AAm) and varying amounts of 2-acrylamido-2-methyl- 1-propane sulfonic acid (AMPS) display various degrees of swelling in aqueous solutions and approximately discontinuous volume changes in aqueous ethanol solutions over narrow ethanol concentrations. Blown films of starch-PMA graft copolymers display controlled shrinkage in response to increases in relative humidity.

Hossein Hosseini , Mohammad Mosaddegh , Behzad Shirkavand-Hadavand, May 2008

Solid state shear pulverization is a novel technology in polymer processing for production of new polymeric materials. By implementation of this technology various processes such as polymer recycling compounding and improving of mechanical-chemical properties of polymers can be enhanced. This is a continuous and one-stage process with low energy consumption. During this process polymers are subject to high pressure and shear forces. In this paper this technology and its applications to polymer processing is perused. At the end recycling of PET wastes by this technology is presented that have higher efficiency in comparison with existing methods.

Rolf Koster, May 2008

The importance of three inter-dependent factors i.e. (1) materials (2) manufacturing and (3) design and engineering is generally recognized. All factors are indispensable and equally important for product development. Manufacturing is often the least structured factor and many designers and materials experts do not consider themselves capable to deal with it. Fortunately expertise is sufficiently available and the best professionals are able to utilize plastics expertise properly in collaborative product development. For bio-based plastics which are rapidly emerging in some specific markets it is already clear that the relation between the three factors is different and more varied than for the currently well-known plastics. Critical factors for increased successful application of bio-based plastics will be product manufacturing and the expectations of applicators and consumers. From interviewing a variety of professionals it was found that clear true and complete information is currently not accessible for most whereas some assumptions are not realistic or not correct particularly the ones related to degradability and to environmental effects. Better and well-structured information will be needed resulting in fulfillment of elementary consumer expectations.

NatureWorks® Polylactide Biopolymer: A Sustainable Polymer for the 21st Century
Richard C. Bopp, March 2008

What is Impact of PLA Biopolymer on Corn Supply and Uses? Based on 2001 Harvest of 9.8 billion bushels (NCGA Data): Export 20%; Alcohol 1%; Other 2%; HFCS 6%; Sweeteners 2%; Starch 3%; Ethanol 7%; PLA 0.6%; Feed 59%

Polymeric Chain Extenders and Biopolymers
Roelof van der Meer, BASF Nederland, Volker Frenz, BASF AG, Germany, Marco Villalobos, Abiodun Awojulu, BASF Corporation, Wyandotte, MI, March 2008

Engineering polymers based on condensation thermoplastics like PET, PBT, Polyamides, Polycarbonates and Biopolyesters have to be reprocessed during recycling at very high temperature, where degradation of these polymers are extremely rapid. As the result of this regradation, the possiblities for reprocessing internal process regrind as well as postconsumer - recycle reclaims back into demanding application is very limited. The polymeric chain extender offer a possibility to rebuild molecular weight and melt strengths of these polyester, blends and related product and open a new window of opportunity for recycling.

Recycling of packaging products including biodegradable plastic materials such as PLA foam, plastic fibers and non-woven materials
Alberto E. Ramírez, March 2008

PALLMANN develops and manufactures size reduction machines and complete systems for the plastics and recycling industries. We have over 100 years in the industry, one of the largest R&D facilities, and a firm commitment to the sustainability movement. PALLMANN continues to offer innovative solutions to the industry, including Size Reduction technology and Agglomeration of Thermoplastics with our Plast- Agglomerator. Our innovating technology is presently applied in such processes as reclamation of carpet waste, packaging products including biodegradable plastic materials such as PLA foam, plastic fibers and non-woven materials, films, etc.

Can I Run PLA on My Existing Extruders? A Practical Application Guide
Edward L. Steward, March 2008

PLA (Polylactide resin) is one of the bio-plastics that has found some product applications and seems to be an extrudable material of growing interest. Any polymer that is made from a renewable resource and that it is a degradable and/or environmentally friendly material seems to gain favor in some markets, especially if it can be processed on existing machinery. This paper will discuss the requirements to efficiently extrude PLA on a single screw extruder with an optimum screw design and processing conditions. Different sizes of extruders will be looked at to give some guidelines as to the required equipment to successfully extrude this material.

Degradation of Biodegradable, UV-degradable and Oxodegradable Plastics with In-vessel Food Waste Composting Environment
Joseph Greene, Ph.D., Department of Mechanical Engineering Mechatronic Engineering, Joseph Greene, Ph.D., Department of Mechanical Engineering Mechatronic Engineering, and Manufacturing Technology, California State University and Fengyu Wang, NWS Jepson Prairie Organics Inc., March 2008

Biodegradable and oxodegradable plastics degraded in an in-vessel compost operation along with food waste from San Francisco, California. Biodegradable plastics included, corn starch based biobag, Mirel PHA bag, BioTuf Ecoflex bag, Husky corn starch based trash bag, PLA lids, sugar cane lids, and Kraft paper. Also buried were polyethylene shrink-wrap, UV degradable plastic bag, and oxodegradable plastic bag. The samples were placed in perforated plastic sacks and mixed with food waste at NorCal and Jepson Prairie Organics (JPO) composting operation in Vacaville, California. After 180 days, the materials that completely degraded included PLA lids, Mirel bags, Ecoflex bags, Husky bags, and corn starch trash bags. Small fragments of sugar cane lids and Kraft paper were visible. The sugar cane and Kraft paper fragments were very moist and would disintegrate when picked up. The Kraft paper and sugar cane fragments did not completely biodegrade due to the lack of mechanical agitation while in the plastic sacks. If the materials were placed in the compost soil, higher degradation would occur due to better interaction with the compost soil. The oxo-biodegradable plastic bags, LDPE plastic bags and UV-degradable plastic bag did not experience any degradation and did not fragment into smaller pieces.

Development and Implementation of Soy-Based Foam in Automotive Applications
Cynthia M. Flanigan, Christine Perry, Deborah F. Mielewski, Ford Research and Advanced Engineering Laboratory, Ford Motor Company, Systems Division, Lear Corporation, March 2008

Using agricultural crops as material feedstock is becoming more prevalent as scientists search for alternative choices to petroleum based products. Soybeans are one crop within North America that is economical and readily available for use in plastic applications. Recently, we have been evaluating the use of soy as reinforcement and resin in a variety of polymer matrices, including flexible and rigid polyurethanes. Our main focus has been on using functionalized soybean oil in the manufacture and formulation development of flexible, polyurethane foams for seating applications. Soy-based foams reduce the environmental footprint compared with the manufacture of petroleum-based foams. These materials utilize a sustainable material, decrease our dependency on petroleum and reduce carbon dioxide emissions. Ford Motor Company has researched methods to overcome several technical issues such as reducing odor in the foam and maximizing soy content in foam formulations, while meeting rigorous, automotive interior applications. In a partnership between Ford Motor Company and Lear Corporation, we have demonstrated the feasibility of formulating and processing soy-based polyurethane systems that have the key properties required for automotive interior and seating foam applications. Prior to launch of this soy technology, numerous processing trials were completed on headrest, armrest and seating applications. We will review the main steps required in moving the technology from a laboratory research setting to production environment and launch of the soy technology in 2008 Mustang. We will also discuss the technical and commercial challenges and benefits of implementing soy-based foam.

Recycling of Long Glass Fiber Reinforced, Padded Instrument Panels
Robert Egbers, Sr., March 2008

The punched sections of composite substrate/foam/skin (punch outs) have traditionally gone to landfill, typically at a cost of $0.05/lb. to the Tier 1 supplier. Wipag Recycling in Germany has developed a process whereby the substrate material is recovered from the composite structure, separating the resin from the foam and skin. The resin has 99.8% purity and can be subsequently blended back into virgin resin for production at a specified percentage without statistically varying the physical properties of the LFPP IP substrate. The WIPAG laminate separation process has been in commercial operation at American Commodities Inc. (ACI) in Flint, MI for the past 7 years albeit with SMA, PC/ABS and TPO substrates. With regard to recycling LFPP, traditional wisdom dictates that the material properties of the resin will be reduced after each heat history due to glass fiber length attrition, caused from the processing of the material. This study shows that up to 30% of resin reclaimed from the composite substrate can be added to virgin material with a minimal effect on the properties of the final part.

Automotive Interior Material Recycling and Design Optimization for Sustainability and End of Life Requirements
Steven R. Sopher, March 2008

Advances in the field of polyolefin resins in the area of PP copolymers, PE homopolymers, and PP & PE blends have allowed for the creation of new and improved polyolefin bead foams. These polyolefin bead foams are capable of improved performance due to the advancements that have been made in the area of polyolefin resin catalyst systems and additives. The benefits of polyolefin bead foams allow for lower densities to be used where higher density extruded foams are currently being utilized. There is a move in the automotive industry to promote the use of sustainable products. Sustainability considerations in automotive design must include a variety of factors. These include: • Weight reduction • Commonization of materials • Use of more environmentally friendly materials • Ease of disassembly at vehicle’s End-Of-Life • Consideration of RoHS requirements • Compliance to OEM, Federal and Industry regulations • Recyclability of materials and current recycling stream • Component design and performance requirements • Vehicle and occupant safety While evaluating all of these considerations when designing for sustainability, it is necessary to understand the allowances for performance and cost trade-offs as they relate to meeting the needs of both the OEM and end user (or customer). This paper will explore the industry trends, particularly those published by the OEM’s as they relate to designing for sustainability and recyclability. This paper will compare some of the newer industry recycling guidelines, as well as vehicle End-Of-Life dismantling requirements. This paper will also explain the intention of the newer vehicle component part guidelines for sustainable development as they relate to automotive component design and ease of disassembly and recyclability. Case studies will be presented to evaluate component part design and the move toward the use of more commonly recycled and recyclable products. Industry trends will also be reviewed as they apply to market demand for more environmentally friendly materials. The pros and cons of using some of the new biobased materials will also be compared and contrasted.

Sustainable Automotive Component Manufacturing Solutions
Gordon C. Miller, March 2008

Being sustainable means that a product or service meets both today’s needs and results in minimized burden to our children and their children and to the environment for the future. This paper will present a proven alternative to environmental issues such as heavy metals used chrome plating for application to plastic components in the global automotive, light truck, and heavy truck industry. It will highlight how this technology, Fluorex® bright film, further contributes to a “greener” environment by eliminating environmental hazards and residual footprints from substances such as heavy metals by using film based solutions contributing to the development of lighter and potentially “greener” light weight vehicles. This translates in both better fuel economy in vehicles using this technology and reductions in emissions from the manufacturing processes. Other environmental benefits for other coating opportunities using Flourex® Paintfilm will be evaluated based on this technology that specifically involve more opportunities to minimize the environmental impact and improve recyclability while contributing to a more aesthetically pleasing environment by enhancing the appearance of vehicles worldwide. This is a solution for manufacturers to provide the appealing and marketable look of chrome or other pleasing surface characteristics on plastic components while being environmental compliant and responsible. This is a sustainable solution for coloring and coating – Fluorex® bright film and Fluorex® paintfilm – a “green” alternative to painting metal and plastic products that enhances the environmental benefits of plastics is both possible and here today.

Trends & Challenges for Start-Up & Emerging Companies in the Clean-Technology Marketplace
Eric Koester, March 2008

The years 2006 and 2007 saw popular culture embrace issues such as global warming, alternative energy production, biofuels, hybrid transportation, and carbon credits. Clean Technology became the fastest growing investment sector and produced some of the most-watched initial public offerings of the recent past. While this new 'fame' has led to an increase in new companies and initiatives, investment dollars, state and federal legislation, and media coverage, it has also led to concerns that the marketplace is a bubble without strong fundamentals to drive the marketplace. Certain investment funds have set up new funds designed to purchase failed and distressed cleantechnology companies. What is the current status of the clean-technology marketplace? What fundamentals exist for the companies that are succeeding and those that fail? Where are the investment dollars and how can companies take advantage of the current marketplace? While some may question aspects of the clean technology revolution, it is without question that a fundamental shift in our consciousness and our culture are occurring -- that has led to unique opportunities and challenges for tomorrow's leaders in clean-technology markets.

Using Recycled Polyethylene: Avoiding the Pitfalls
Frits van der Klooster & Chris Ernst, March 2008

Advanced Blending Technologies has developed a software program that creates low cost optimized blends from wide-/off-spec and/or recycled Polyethylene streams of material, by providing blend formulations based on up to seven selectable material properties. The resulting blends are prioritized by least cost and eliminate the need for costly “Trial and Error” experimenting with blends. Combined with rapid testing of incoming material streams, the OptiMISER® system has successfully been used to convert 100% virgin material processors to 100% recycled usage, at substantial bottom line savings. The OptiMISER system provides the materials engineering needed to maintain production efficiency and insure product quality. Using recycled or wide-/off-spec PE usually results in decreased manufacturing efficiencies, increased scrap and worse; decreased end product quality. This paper discusses a systematic approach which allows the use of up to 100% recycled and/or wide-/off-spec materials while maintaining or even increasing manufacturing efficiencies, reducing process scrap, insuring a consistent end quality product, and significantly reducing overall finished product costs.

The Litterability of Plastic Bags: Key Design Criteria
K.Verghese, RMIT University Centre for Design , M.Jollands & M.Allan , RMIT University School of Civil, Environmental and Chemical Engineering, March 2008

Single use plastic bags are used by the billion in supermarkets, fast food outlets and retail stores because of their excellent fitness for use, resource efficiency and cheap price. They come in many varied shapes, sizes and materials. Because of their light-weight nature they are only a tiny fraction of the tonnage of plastic used in the packaging industry, yet they make a major contribution to litter, thanks to their large surface area and lack of biodegradability. In 2006 the Australian Government Department of Environment and Heritage initiated and funded, courtesy of the Natural Heritage Trust, a study to investigate the effect of bag design on litterability. This paper draws on report materials from the study that are the intellectual property of the Commonwealth. The paper presents a review of previous studies on plastic bags, a review of international plastic bag regulations, as well as the results of an assessment of the environmental impact of bag design using a streamlined life cycle assessment and the litterability of bag design using equipment including wind tunnels. The paper concludes with recommendations for bag design to maintain resource efficiency while reducing litterability.

The Use of Peroxide Masterbatches in the Processing of Regrind and Post Consumer Waste
Marty Paisner, March 2008

To be both green and profitable, many plastic manufacturing processes need to reprocess scrap into useful, saleable products. By its very nature the regrind derived from scrap is usually heterogeneous particularly by way of its melt properties. The proper use of peroxide masterbatches can transform regrind, and also post consumer waste, into a useful raw material stream where not only the melt properties are homogenous, but other desirable properties are developed, resulting in high quality products. This paper shows the chemistry behind peroxide‐induced modifications of polypropylene and polyethylene, the increased melt flow rate by using peroxides in reaction extrusion, the advantages of using the peroxide additive in concentrate form, and a method for increasing the properties of commingled polypropylene and polyethylene.

Applications & Markets for Renewable Resource Based Sheet Molding Compound
Rob Seats, September 2007

Unsaturated polyester resins based on renewable resource raw materials (soy and corn) have been commercially available since the late 1990s. These resins have successfully been formulated into sheet molding compound and are compression molded into parts used by the John Deere Corporation to manufacture farm machinery. This paper will discuss the economics and environmental effects of using renewable resource based composites describe the current applications where the technology is being used and consider the future of bio based technology in the composites industry.

Development & Thermo-Physical Properties of Bio-Based Polymer / Clay Nanocomposites
Mahmoodul Haq, September 2007

Bio-based resin systems obtained as blends of functionalized vegetable oils and petroleum based resins have been found to increase toughness of petroleum based resins and improve their environmental friendliness. Nevertheless this improvement in toughness generally compromises the stiffness of the resin system. Nano-scale layered silicate (nano-clay) polymer nanocomposites exhibit enhanced mechanical and physical properties at relatively low weight fractions of inclusions. The reported study shows that proper stiffness – toughness balance along with enhancement in many other physical properties can be obtained by incorporating nano-scale layered silicates in bio-blended polymers. Polymer nanocomposites with varying clay contents and varying bio-blend (epoxidized soya bean oil) in unsaturated polyester resins were manufactured. Tensile properties and moisture absorption properties were studied. Fracture surface morphologies and characterization of nanocomposites were performed using electron microscopy. The resulting bio-blended polymer nanocomposites exhibit promising results for use in structural applications.

SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use



SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net