SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Sustainability
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Transamidation Of Corn Oil Side-Steam Product From Bioethanol Industry As Strategy To Develop Sustainable Polyesteramides
Manjusri Misra, May 2018
The valorization of side-steam products from bio-refinery is of crucial interest to develop further the viability of a bioeconomical system. The corn oil is one of the important co-products from the bioethanol industry with a production of more than 2.7 billion pounds in 2015 in USA. [1] In this investigation we propose to create new materials with higher added value by developing new monomers and polymers through transamidation and successive polyesterification. The resulted sustainable materials can be used as toughening agent for both thermoplastic and thermoset polymers.
Tunable Degradation Of Poly(Butylene Succinate) By Copolymerization And Catalysts
Siwen Bi, May 2018
In recent decades, poly(butylene succinate) (PBS) has been attracting attention as a promising and important polymer in the bio-based and biodegradable polymer family due to high thermal resistance and good mechanical properties. However, compared with other biodegradable polyesters (e.g., poly (lactic acid)), the high cost of PBS limits the widespread applications, especially for the packaging industry. In this paper, PBS-based copolyesters were prepared successfully by a two-stage melt synthesis, and degradability of the polyesters was investigated. It was found that the degradability of PBS could be tuned over a wide range by adjusting the degradation catalyst and lowering crystallinity by forming random copolymers. Based on our previous work on the tunable properties of PBS-based polyesters, the degradation results indicated that the enzymatic degradation mainly depends on the morphology and thermal properties, while the ratio of ester groups in polymer is the crucial factor for base-catalyzed hydrolysis.
Ulta-Low Density Foams Of Nanocrystalline Cellulose Reinforced With Polyvinyle Alcohol
Nahal Aliheidari, May 2018
Environmentally friendly thermal insulation and energy saving materials are in high demand for buildings, packaging, and other applications. Here, we report ultra-low density composite foam materials that are mainly composed of cellulose, an abundant degradable and recyclable green material. Nanocrystalline cellulose (NCC) was mixed with 0-20 wt.% polyvinyl alcohol (PVA) in an aqueous solution, followed by ice crystallization and freeze drying processes to fabricate the NCC/PVA cellular structures. Ultralight foams with densities as low as 0.026 g.cm-3 (porosities as large as 98.22%) were successfully prepared and their compression and thermal conductivity behaviors were characterized. The results revealed that the compressive stiffness and strength of NCC foams can be significantly enhanced (about an order of magnitude) by the introduction of 20 wt.% PVA as an elasticity enhancer. The thermal conductivity of NCC/PVA foams remained approximately unchanged with an increase in the PVA content and varied only between 0.037 and 0.041 W/mK, a range that is common for commercially available insulation materials. A relatively low thermal conductivity with enhanced mechanical properties of these NCC-based foams offers a potential bio-based material composition for insulation applications.
Wheat Protein As A Participant In The Sulfur-Curing Of Isoprene Rubber
Barbara DeButts, May 2018
In this study, trypsin hydrolyzed gliadin (THGd) from wheat was used as a curative and reinforcing filler in synthetic isoprene rubber (IR). Curing kinetics of the THGd compounds demonstrated that THGd was most effective when utilized as an activator in place of zinc oxide and stearic acid (ZnO/STE). The THGd vulcanizates exhibited comparable or higher moduli to the control, but lower crosslink densities and slower curing kinetics. THGd was able to facilitate crosslinking, as shown by swelling experiments, but further study is needed to match/exceed the kinetic properties of the control. Interestingly, THGd was very effective as a reinforcing filler and reinforcement increased as a function of molding time. Thus, rubber processing was favorable to the self-assembly of hydrolyzed protein into a reinforcing phase.
SPE Sustainability 2nd Quarter Newsletter
SPE Sustainability Division, August 2018
Read the latest issue of the SPE Sustainability Division newsletter.
SPE Sustainability 3rd Quarter 2018 Newsletter
SPE Sustainability Division, October 2018
Read the 3rd Quarter 2018 issue of the SPE Sustainability Division newsletter.
SPE Sustainability 2018 4th Quarter Newsletter
SPE Sustainability Division, February 2019
Read the 2018 4th Quarter issue of the SPE Sustainability Division newsletter.
SPE Sustainability 2019 1st Quarter Newsletter
SPE Sustainability Division, April 2019
Read the 2019 1st Quarter issue of the SPE Sustainability Division newsletter.
Five Myths About Material Recycling
Kelvin Okamoto, July 2019
The debate about plastics recycling has entered the public arena, with implications for processors, material scientists, business owners, and policy makers. We have seen plastic bans and the introduction of alternative packaging materials, some of which have larger environmental footprints of the plastics they are replacing. Can paper be recycled indefinitely? Is foam impossible to recycle? In this webinar, Kelvin Okamoto, will identify 5 myths of materials recycling and present real-world examples and case studies to illuminate the complex truths of this increasingly important topic.
Aerogel from Food Waste
Zhang Xiwen, August 2019
What is Aerogel? Lightest but strong solid material with extreme low densities of 3 to 40 mg/cm3. Highly porous materials (> 99% of air) with large surface area. Objectives of the using coffee for aerogel: Repurpose food wastes into something useful while keeping environmental impacts to a minimum; Design a FULLY BIODEGRADABLE aerogel for various applications; Sustainable processing development for designed coffee aerogels; Functionalize the aerogels towards certain applications.
An Extreme World Needs Extreme Materials
Wenda Chen, August 2019
6 research platforms dedecated to sustainable development: New energies; Biosourced materials; Water treatment; Home efficiency and insulation; Lightweight materials; Consumer electronics.
Circular Meterials for Single-Use Flexible Packaging
Yap Chin Chong | Leong Yew Wei, August 2019
Chemical solutions for a circular economy: Mechanical recycling (Re-use: PET/PP/PE); Plastic waste to fuel (Conversion: PP/PE); Plastic waste to fine chemical (PS); Dynamic reversible crosslinker; Self-immolative, polymers; Fully recycle monomer-polymer-monomer; Bioplastics
Understanding Failure Rate in Plastic Components
Jeff Jansen, September 2019
When a plastic part fails, a tough question is often asked, “Why are a limited number of parts failing?”. This is particularly true with seemingly random failures at significant, but low, failure rates. Two aspects are generally linked to such low failure rates, multiple factor concurrency and the statistical nature of plastic failures. Failure often only takes place when two or more factors take effect concurrently. Absent one of these factors, failure will not occur. Plastic resins and the associated forming processes produce parts with a statistical distribution of performance properties, such as strength and ductility. Likewise, environmental conditions, including stress and temperature, to which the resin is exposed through its life cycle is also a statistical distribution. Failure occurs when a portion of the distribution of stress on the parts exceeds a portion of the distribution of strength of the parts. This webinar will illustrate how the combination of multiple factor concurrency and the inherent statistical nature of plastic materials can result in seemingly random failures.
The Use of Recycled and Waste Materials in Selected Automotive Applications
K. Tarverdi | P. Allan | P. Marsh | J. Silver, December 2019
This report is an account of a project that went under name ‘Light AND Sound’ or the acronym ‘LANDS’. The objective was to investigate the potential use of recycled and waste materials in automotive components. Five components were selected for the investigation. All of them had the potential to be manufactured from waste and recycled materials. The trial materials which included recycled polypropylene and a particulate industrial solid waste stream, were processed into prototype components that were evaluated and compared with the respective production counterparts. Finally a life cycle assessment was carried out for each prototype component that was also compared with the current part. The overall results indicated a clear potential for the use of the project materials in their respective application.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net