SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author


Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Biodegradable Plasticizers for Polylactic Acid
Stephen McCarthy, Xu Song, May 2001

Poly(lactic acid) [PLA] is a well known biodegradable polymer which has been used in drug delivery systems, surgical repair systems such as sutures and bone fracture fixation pins and screws. PLA is biocompatible, has a high tensile strength, and has a high elastic modulus[1,2]. However, one drawback of PLA is the low elongation at break due to a brittle fracture while under tensile and bending loads. The elongation at break of PLA is typically 3 - 5 percent[1]. The reason for this brittle behavior is due to physical aging which occurs during storage at room temperature and has been studied extensively.[3] Plasticization is a common technique used to increase the ductility of a brittle polymer. In the case of PLA a suitable plasticizer must be miscible with PLA so as to decrease the glass transition temperature, as well as be biodegradable and nontoxic so as to provide a useful biodegradable blend. The advantages of the plasticization are low cost, ease of processing, and the ability to alter the properties of the blends by varying the amount of plasticizer. Use of a functionalized plasticizer can be more desirable such that a chemical bond is formed with the PLA polymer thereby preventing loss of the plasticizer through migration.

Blends of Starch with Poly(Vinyl Alcohol)/Ethylene Copolymers for Use in Foam Containers
Geoffrey A.R. Nobes, William J. Orts, Gregory M. Glenn, Gregory M. Gray, Micahel V. Harper, May 2001

The use of foamed polymer packaging such as polystyrene (PS) cups, bowls and clamshells has decreased in recent years because of perceived environmental disadvantages. Blends of starch with poly(vinyl alcohol-co-ethylene), PVOH, a degradable, water-resistant polymer, were processed into viable alternatives to PS providing degradable polymers from renewable resources. Modulated DSC and X-ray crystallography were used to characterize the miscibility and morphology of extruded starch/PVOH blends that contained a series of plasticizers. These included combinations of water, glycerol, triacetin, citrate esters, and amino acids. The optimal blend formulation, based on miscibility, strength, aging characteristics, and capability to replace PS foam was--60-65% wheat starch, -25 -30% PVOH, and -5-10% plasticizer.

Blends of Various Proteins with Poly(Hydroxy Ester Ether)
C. Wang, C.J. Carriere, J.L. Willett, May 2001

Blends of poly (hydroxy ester ether) (PHEE), a recently developed bisphenol A ether-based synthetic biodegradable thermoplastic polymer, with a soybean protein isolate and two hydrolyzed wheat glutens were studied. Blends of the proteins with PHEE were produced from 20-70% by weight of protein content. The Young's moduli of the protein/PHEE blends falls in the range of 0.8 - 1.5 GPa with the tensile strengths ranging from 10-30 MPa. Fracture strengths of the blends ranged from 9-2 MPa-m1/2 depending on the amount of protein added. Morphological analysis indicated acceptable adhesion between the protein and PHEE phases in the blends. In general, as the protein content was increased the materials lost ductility and failed in a brittle manner; however, the mechanical properties of several compositions were comparable to current commercial thermoplastics such as polystyrene.

Combined Process Variables and Process Energy Monitoring for Injection Moulding
A.J. Dawson, P.D. Coates, A.L.Kelly, M. Woodhead, R. Collis, L. Owen, D. Owen, May 2001

Good injection moulding machine control is a necessary requirement for control of the process, however there is an acknowledged lack of process understanding, related in turn to a lack of understanding of the polymer under process conditions which inhibits the development of standardised route to process control. In our laboratory, specific pressure indices in an identified low noise region of the primary injection stage of injection moulding have been found to provide a sensitive indicator of changes in a polymer, including batch to batch changes and process-induced changes, which in turn allows meaningful Statistical Process Control to be undertaken. Growing concern for environmental issues, including international standards agreements such as ISO14001, demonstrate a clear requirement to conserve energy for both environmental and cost issues. Detailed energy measurements on injection moulding machines both in the laboratory and in industry demonstrate the potential of process energy measurements as an aid to the development of a systematic management approach to the environmental concerns of an organization. Laboratory DOE studies allow a further insight into the influence of a variety of machine variable settings on the total energy consumption. We are currently in the process of combining both process variable and process energy measurements, to provide processors with the richest level of process information.

Conductive TPO for Electrostatic Painting
Susan Babinec, Ray Lewis, Robert Cieslinski, May 2001

The TPO (Polypropylene/Elastomer) market for injection molded automotive bumper fascia is driven by cost reduction, a balance of physical properties, ease of processability, and desirable aesthetics. Global volume for this application was approximately 740 MM lbs. in 1999, nearly half of which is electrostatically painted. Decreased application costs, increased productivity, and reduced environmental emissions can be realized through system optimization. This report describes the rheological and morphological phenomena governing the development of a conductive TPO (CTPO) for enhanced electrostatic painting.

Degradation Mechanisms of Thermoplastic Polyurethane Resins
Philip H. Patterson, James M. Sloan, Alex J. Hsieh, May 2001

The use of polymeric materials for transparent, lightweight armor has been of great interest to the U.S. Army for a number of years. Field items such as goggles, lens, face and windshields are currently manufactured using advanced polymeric plastics. These items are designed with polymers that provide excellent optical clarity, rugged abrasion resistance, and high ballistic impact strength. However, as with any organic polymer system, these materials are susceptible to degradation over time when exposed to various environmental (i.e. sunlight, moisture, temperature) conditions. This structural degradation (1-4) will eventually comprise the original integrity of the materials' desired properties. In this study, the impact of accelerated weathering upon newly developed polyurethane based thermoplastic materials was investigated. A fluorescent ultraviolet (UV)/condensation weathering tester was selected for the exposure study. The materials were characterized by UV/VIS spectroscopy and FT-IR spectroscopy. The results reveal that the urethane linkages undergo a scission reaction upon UV exposure drastically affecting the mechanical properties of the material. Furthermore, these urethane scissions produce a yellowing of the polyurethane which can inhibit its use where optical clarity in important.

Development of High Quality Recycled Polyethylene Resins for the Replacement of Virgin Resins
Violet Stefanovski, Edward Kosior, Syed Masood, Pio Iovenitti, Igor Sbarski, May 2001

Dairy and fruit juice bottles are a major source of post consumer recycled high density polyethylene (PCR HDPE). The recycled HDPE has limited post-consumer applications due to its poor stress crack resistance (SCR). This paper presents a review of a test method for SCR and some preliminary results of the development of recycled HDPE blends with improved SCR. The improvement has been achieved with the addition of a modifier, and results indicate that there is a potential to incorporate the use of recycled HDPE in non-pressure pipe applications. These customised blends have been tested for SCR according to the Notched Constant Ligament Stress (NCLS) test. The NCLS test is a new test method (ASTM F17.40) which is currently under development. The NCLS test will be used to determine the susceptibility of HDPE resins to slow crack growth (SCG) under a constant ligament stress in an accelerated environment. The results from the test will subsequently be correlated with field performance results.

The Effect of Blending on the Viscosity Reduction of Recycled Milk Bottle Grade HDPE
Natalia Kukaleva, George Simon, Edward Kosior, May 2001

Post-consumer plastic waste in Australia contains over 50,000 tonnes p.a. of HDPE blow moulded bottles, with half still ending up in landfill. Recycled milk-bottle grade HDPE is known to be too high in molecular weight for processing by injection molding. In this study, the target was to make injection-molded compositions with a content of the recycled material of 75% or higher by blending with commodity plastics. The results of rheological, thermal and mechanical studies of the blends are presented.

The Recycling of Thermoset Materials into Thermoplastic Composites
David D. Camlin, Matthew J. Heidecker, Sarah M. Reynolds, May 2001

Thermoset process scrap costs companies millions of dollars annually. Specific thermoplastics could benefit from the addition of recycled thermoset material. The incorporation of thermoset regrind into thermoplastic material would provide a viable alternative for the thermoset scrap that is currently sent to the landfills.

Environmental Lining Systems - Raising the Standards
Ian D. Froment, May 2001

Annually, the United Kingdom deposits around 20 million tonnes(1) and the United States around 2 billion tonnes(2) of waste into landfill. To protect the environment from the harmful effects of leachate from the waste, landfill sites are protected using a system of thermoplastic liners, typically made from polyethylene. Due to manufacturing limitations on the size of the lining sheets, welding is employed to join adjacent sheets at the landfill site. This paper reviews current welding practices, the industry approach to quality, and discusses the moves towards certification of welding personnel in order to raise standards across the industry.

Environmental Stress Cracking of PC in Contact with Aqueous Solutions
R. Berlich, E. Schmachtenberg, May 2001

The environmental stress cracking (ESC) behavior of some plastics is very well examined. Especially for polyethylene the mechanisms are nearly clear. For amorphous thermoplastics this mechanisms were examined in many researches, but are still not really clear. Especially for polycarbonat (PC) in contact with aqueous solutions systematic examinations of the ESC behavior are rare. In this paper examinations of the ESC behavior of PC in different aqueous solutions are presented. The tests were done by a medium-tensile-creep test. Different pH-values of water and a surfactant were examined about their influence on the ESC behavior. Also distinctive types of PC and their influence on the ESC behavior were examined. It is determined that the ESC of PC in contact with aqueous solutions is not only, like classical approach, controlled by physical effects. A large effect of chemical mechanism is also part of the failure mechanism.

Environmentally Friendly Plasticizers for Polyvinyl Chloride (PVC) Resins
Bhima R. Vijayendran, Herman Benecke, Joel D. Elhard, Vincent D. McGinniss, Kim F. Ferris, May 2001

There has been increased interest in developing alternatives to phthalate plasticizers used in the processing of polyvinyl chloride (PVC). This paper describes research on modifying the composition of vegetables oils such as soybean oil for use as primary plasticizers for PVC. Advanced computational chemistry and modeling studies have been conducted to correlate structures of modified soybean oil with their compatibilities in PVC resin. The new soy oil derived plasticizers have excellent plasticizing efficiency with significantly reduced migration and volatility. Properties and performance of the new modified soy oil compositions as primary plasticizers in typical PVC formulations are summarized and compared to those of a standard phthalate PVC plasticizer.

Extrusion/Compression of Long Fiber Thermoplastic Composites
Klaus Gleich, May 2001

It is becoming common for long fiber-reinforced thermo-plastics (LFT) to replace existing GMT-type applications as well as to capture new applications. This is especially true in the European automotive industry, where the market for parts made from LFT is experiencing tremendous growth. The following paper discusses the available materials, the mechanical and physical properties, machine techniques and processing details of the LFT process. It will also discuss potential applications for LFT. The paper will cover different process techniques such as direct processing and make comparisons with other processes. An explanation on the effects that LFT has on properties and economics will be made. It will show how the economics can be improved by adding recycled material to the process. This paper will provide a better understanding of the LFT-process and how you could get benefits from this process.

Failure Analysis of a Cracked Construction Vehicle Grille
Jeffrey A. Jansen, Mary K. Kosarzycki, May 2001

Cracking occurred within grilles used on heavy construction equipment, without apparent cause. The cracking was observed to be sporadic and had initiated while the parts were being stored in a warehouse, prior to installation on the vehicles. The cracking was found adjacent to holes used to secure a logo nameplate in conjunction with metal bolts. The focus of this investigation was a timely determination as to the nature and cause of the failures. Of particular interest was whether the failure was primarily associated with material, design, processing, or environmental factors. This paper will document some of the testing performed to characterize the failure mode and identify the root cause of the cracking, in order to illustrate the failure analysis process.

Film Finishing Part I: Commercial and Emerging Thermoplastic Film Based Technologies
Thomas M. Ellison, May 2001

The Automotive Finishing Industry, valued at $2.3 billion in North America1, is faced with serious challenges to reduce cost and a growing urgency to meet environmental pressures. The industry is making major progress to reduce emissions but more must be done as requirements are tightened. Concurrently, other technologies are being advanced that may radically change the finishing process in the long term. Finishing plastic parts with film is one of the emerging technologies. Film finishing presents an opportunity for the Plastics Industry to step forward with an all-plastic solution - plastic film finishes on reduced weight plastic body panels.

High Carbon Fly Ash/Mixed Thermoplastic Aggregate for Use in Lightweight Concrete
Robert Malloy, Nirav Desai, Charles Wilson, Christopher Swan, Daniel Jansen, Mohsen Kashi, May 2001

Synthetic lightweight aggregate has been produced by melt compounding high concentrations of high carbon fly ash into various thermoplastic binders. The composite material is being developed as a synthetic lightweight aggregate for use in applications such as lightweight concrete. In this study, a series of lightweight aggregates have been produced using several fly ash concentrations, and several different thermoplastic binders. The synthetic aggregates have been produced using flexible thermoplastic binders, rigid thermoplastic binders, and a mixed thermoplastic binder formulation. The physical properties of the melt compounded aggregate materials have been evaluated in an effort to determine the relationship between variables, such as the binder stiffness, and the aggregate stiffness. Lightweight concrete test samples have also been prepared and evaluated. The results of the study show that the lightweight aggregate properties are influenced by both the fly ash concentration and the thermoplastic binder composition. However, the effect that the thermoplastic binder has on the physical properties of the aggregate becomes less significant at high fly ash concentrations. At fly ash concentrations of 80%, the physical properties of the aggregate are fairly insensitive" to the composition of the thermoplastic binder. The aggregates produced using a mixed plastic composition had properties that were quite similar to those produced using the individual (control) thermoplastic binders indicating that low value mixed plastic waste may be a candidate binder material for the polymer bound fly ash aggregate."

Interaction in PC/ABS Blends Prepared in a Dynamic Melt Mixer
Károly Belina, Péter Juhász, Desi Csongor, Nick R. Schott, May 2001

Polymer blends are more and more important materials in polymer technology. Their role increases due to the recycling processes of mixed plastic waste. One of the key problems of polymer blends is the interaction between the components as they determine the properties. Commercial polycarbonate (PC) and ABS were blended in a dynamic melt mixer in 80/20 and 70/30 ratios. Homogeneity of the blends was characterized by SEM method. Glass transitions of the blends and the pure materials were measured by calorimetric and dynamic mechanical analysis. The interaction and the partial miscibility between the components were determined from the shift of the glass transition temperatures. It was found that the homogeneity of the blends was uniform. The shifts of the glass transition temperatures show some interaction between the components.

Load Oriented One-Step-TWINTEX®-Sandwich-Structure for Large Scale Production of Automotive Semi-Structural Components
Frank Henning, Stefan Troester, Peter Eyerer, Ingo Kuch, May 2001

In a joint project with the German automotive industry, the Fraunhofer Institute, material suppliers, component-and mold manufacturers, a thermoplastic sandwich material has been developed. The goal is to offer a cost-effective material with increased mechanical properties to combine the advantages of In-Line-Compounded long fiber reinforced thermoplastics (LFT-ILC) or well-established thermoplastic semi-finished products like GMT and advanced thermoplastic TWINTEX® woven fabrics. These requirements are fulfilled by a sandwich which consists of outer layers of woven fabrics and a core layer of recycled material mainly of shredded TWINTEX®, GMT or LFT components or production waste. The foot support for the smart vehicle has been selected to evaluate the sandwich system.

Nanometer-Scale Structural, Tribological, and Optical Properties of Ultrathin Poly(Diacetylene) Films
A.R. Burns, R.W. Carpick, D.Y. Sasaki, May 2001

The ability to create organized ultrathin films using organic molecules provides systems whose chemical, mechanical, and optical properties can be controlled for specific applications. In particular, polymerization of oriented mono- and multi-layer films containing the diacetylene group has produced a variety of robust, highly oriented, and environmentally responsive films with unique chromatic properties [1]. These two-dimensional poly(diacetylene) (PDA) films, where the conjugation runs parallel to the film surface, have previously been prepared in a variety of forms [2]. Of particular interest is the optical absorption of PDA due to its -conjugated backbone. A wide variety of PDA materials, including bulk crystals, thin films, and solutions, exhibit a chromatic transition involving a significant shift in absorption from low to high energy bands of the visible spectrum, thus the PDA appears to transform from a blue to a red color. In addition, the red form is highly fluorescent, while the blue form is not. This transition can be brought about by temperature [3, 4], binding of specific biological targets [5], and applied stress (mechanochromism) [6, 7]. In this paper, we discuss the Langmuir deposition of ultrathin PDA films and the subsequent measurement of their structural, optical, and mechanical properties at the nanometer scale. By altering the head group functionality, we can choose between mono- and tri-layer PDA film structures [8]. Measurements with the atomic force microscope (AFM) reveal strongly anisotropic friction properties that are correlated with the orientation of the conjugated polymer backbone orientation [9]. Furthermore, we can use the AFM tip or a near field scanning optical microscope (NSOM) tip to locally convert the PDA from the blue form to the red form via applied stress [7]. This represents the first time that mechanochromism has been observed at the nanometer scale. Dramatic structural changes are associated with this mechanochromic tr

Natural Fiber Reinforced Polypropylene Composites – an Approach on Thermoforming Processing
Octávio Pimenta Reis Neto, Nestor Pedro Giacomini, May 2001

This work has been performed at Mercedes-Benz of Brazil in a partnership with its suppliers aiming the replacement of fiberglass in polypropylene matrix composites by natural fiber reinforcements. The process that has been chosen for this purpose was Vacuum-forming. This choice took into account the large application that this technique represents in the company's commercial products. The results expected for this new material is cost and weight reduction besides the friendly environmental aspect that this change introduces. Jute fiber reinforced polypropylene sheets at constant thickness and fiber content were prepared in order to evaluate the feasibility of the application. The preliminary results have shown that this material has a great potential of application because of the low fiber costs.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net