SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Recycling

Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Enzymatic Degradation of Polyurethane-Based Coatings
Y. He, S.V. Malhotra, M. Xanthos, May 2005

In order to develop a potentially environmentally safe alternative to conventional paint removal methods we are investigating the enzymatic degradation of liquid polyurethane-based coatings and their films. A simple protocol for degradation has been developed using aqueous buffer solutions at 37 °C and an optimum pH. Two enzymes were selected, namely am esterase from Bacillus sp. and a protease (papain) that could potentially attack ester and urethane linkages. The extent of degradation was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and weight loss. Results indicate higher activity for the papain enzyme depending on the type of paint, enzyme concentration and conditions of application.

Foaming Polystyrene with a Mixture of CO2 and Ethanol
R. Gendron, M.F. Champagne, Y. Delaviz, M.E. Polasky, May 2005

Use of mixtures of blowing agents in thermoplastic foam extrusion has been an industrial practice for a long time. However it has gained renewed interest in the past few years due to the introduction of difficult-to-process alternative gases, targeted as potential replacement for the banned ozone-depleting blowing agents. Reasons for blending physical foaming agents (PFA) are numerous. The incentives may be economical, environmental or technical. With respect to that latter factor, blending suitable PFA’s is often regarded as providing a better control of processing conditions. For example, a specific PFA could be selected for its inflation performance and blended with other co-blowing agents chosen for their stabilizing role. Although considerable amount of work has been done in that area, very little information has been disclosed in open literature.Carbon dioxide (CO2) has been reported as an interesting candidate for low-density polystyrene (PS) foaming, although the required concentrations are associated with high processing pressure due to the low solubility of the gas. Thus stable processing conditions are difficult to achieve. This work studies the effect of blending CO2 with ethanol (EtOH) as a co-blowing agent for PS foaming. Extrusion foaming performance of this mixture will be discussed, with respect to its solubility (i.e. degassing conditions) and rheological behavior. The function of each blowing agent during the process will be analyzed with respect to the plasticization, nucleation, expansion and stabilization phases. Attention will also be paid to the interaction involving the two PFA components.

Fracture Behavior of Natural Fiber Composites
C.R. Bernal, V. Alvarez, A. Vázquez, May 2005

The fracture behavior of two natural fiber composites was investigated. Tensile and fracture tests were performed on sisal reinforced HIPS and sisal/starch based composites. An increasing trend of stiffness with fiber content was found in both cases, whereas tensile strength decreased for sisal/HIPS composites. A maximum in sisal/HIPS composites quasi-static fracture toughness with fiber loading was observed, while they exhibited lower impact toughness values than HIPS. For the biodegradable composites, fracture toughness increased with fiber content and it depends on fiber orientation. In puncture tests, these composites exhibited higher values of fracture energy than neat matrix and fiber orientation affected the damage zone.

Gas-Assisted Low Temperature Bonding of Polymeric Micro/Nanostructures
Yong Yang, L. James Lee, May 2005

Polymer-based biomedical micro/nanodevices containing environmentally sensitive biomolecules are attracting increased interest. A critical requirement is the ability to assemble these devices at low temperatures in order to minimize denaturization. Studies of polymer thin films revealed that the properties at the polymer surface differed from those in the bulk. It was found that glass transition temperatures (Tg) at the polymer-air surface was substantially lower than the bulk Tg and increased toward the bulk value with depth from the surface. Subcritical CO2 could enhance the chain mobility and greatly depress Tg near the surface. Benefiting from this, we successfully demonstrated low temperature bonding of polymeric micro/nanostructures. The original micro/nanostructures are perfectly preserved after bonding.

Human Osteoblast Development on Polycaprolactone and Polycaprolactone/Hydroxyapatite Composite Scaffolds for Tissue Engineering
Stacey Russell, Aldo Crugnola, May 2005

The study investigated the growth and adhesion of normal human osteoblasts (NHOst) to two different biodegradable systems. These materials included polycaprolactone (PCL) and polycaprolactone/ hydroxyapatite (PCL/HA) composite.We studied the attachment of osteoblasts to two-dimensional films of these materials. We specifically looked at the potential of these two biodegradable systems to promote bone tissue growth. The materials were cast into two-dimensional films. They were evaluated for functionality, growth and adhesion at designated intervals using microscopy and bone-specific alkaline phosphatase (BAP) and osteocalcin (OC) immunoassays.The cells on the composite scaffold produced more BAP than the cells alone or on the PCL scaffold. However, the cells on both types of scaffolds showed lower levels of OC than the cells alone.

Hygrothermal Aging of Recycled-PET Sandwich Injection Moldings
Y.W. Leong, X. Yang, S. Nagata, N. Kunimune, H. Hamada, May 2005

Thermal instability and hydrolysis have been the major factors and driving force behind the continued efforts by researchers to improve the properties of recycled poly(ethylene terephthalate) (RPET) in order for them to be considered useful. This study aims at enhancing the resistance of RPET moldings to hygrothermal aging without making any chemical modifications to the resin. The only means of modification that is done here is through alterations in terms of processing conditions and techniques. The sandwich injection molding technique is capable of producing specimens with a distinctive skin and core structure. Water absorption rate of the sandwich moldings was found to be much lower compared to conventionally molded specimens. Tensile and bending properties have also shown significant improvement favoring the sandwich specimens. The change in morphology due to ‘double-resin-flow’ in sandwich injection moldings could have created a layer between the skin and core that has excellent barrier properties that prevents water absorption into the inner parts of the specimens.

Injection Molded Novel Green Materials from the Byproduct of Corn Based Ethanol Industry
Dinesh Aithani, Amar K. Mohanty, May 2005

The corn gluten meal (CGM) is one of the major byproducts of ethanol industries. The current use of CGM is more towards livestock feed. This research looks forward in using CGM in making novel biodegradable plastics by blending with one petroleum-derived biodegradable polymer like poly (?-caprolactone), PCL. The CGM was plasticized with glycerol and destructurized with guanidine hydrochloride (GHCl) followed by blending with PCL. Extrusion followed by injection molding processing was adopted in fabricating the new blended green materials. The processing conditions affected the performance of the blends. The resulting green materials were studied for their mechanical properties using dynamic mechanical analyzer (DMA), united testing system (UTS) and izod impact tester.

Investigating Flow Behavior of Wood-Plastic Composites
Andrew Yacykewych, May 2005

The trend toward increased usage of renewable resources has led to the growing popularity of wood-filled materials. These emerging materials require extensive testing – beginning with formulation and ending with the final manufactured product. In the early stages of development, it is possible to acquire data comparing differences between recipes utilizing a Mixer/Measuring Head. The given blend can be compounded with a customized twin screw extruder and torque rheometer. Finally, a single screw extruder can quantify the rheology of the compound using a capillary die. The objective of this work is to investigate the behavior of a polyolefin based wood-filled compound using a torque rheometer.

Microwave Processing of Chopped Natural Fiber Composites and Their Thermal and Morphological Characterizations
Nikki Sgriccia, Martin C. Hawley, Manjusri Misra, May 2005

Experiments have been performed to investigate the effectiveness of microwave curing of natural fiber reinforced composites. Industrial hemp, flax, kenaf, henequen and glass (15 weight percent) reinforced epoxy (diglycidyl ether of bisphenol-A (DGEBA) cured with diaminodiphenyl sulfone (DDS)) composites were studied. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and environmental scanning electron microscopy (ESEM) were used to investigate material properties. Samples were processed using both microwave and thermal curing for comparison. Several composites reached a greater final extent of cure with microwave curing. ESEM micrographs indicate a lack of bonding at the interfaces between the fibers and the matrix.

Next Generation of Soft TPUs
Gerald DiBattista, Eva Gestermann, Wolfgang Bräuer, May 2005

The demands made on elastomeric plastics – particularly those destined for applications where tactile properties are key – are growing ever more rigorous. Many such applications make use of thermoplastic polyurethanes (TPUs), drawing on their excellent properties of abrasion resistance, flexibility, chemical resistance and freedom from plasticizers. To gain the softness desired by the marketplace, TPUs are softened by the addition of plasticizers or compounded with other softer materials. Unfortunately these practices usually come at a cost of reduced mechanical or physical properties or raise potential environmental issues. Bayer MaterialScience has recently developed a new series of softer, processing friendly TPUs that are free of plasticizers and are not compounded with any other materials. The basis of these materials is explained below, illustrated using practical examples.

Novel Green Nanocomposites from Toughened Polyhydroxyalkanoate and Titanate Modified Montmorillonite Clay
Yashodhan S. Parulekar, Amar K. Mohanty, May 2005

The environmental regulations, societal concerns, and a growing environmental awareness have triggered the search for new products and processes that are compatible with the environment. Polyhydroxybutyrate (PHB) is a biodegradable polymer that has created significant interest recently because of its renewable resource-based origin. PHB shows susceptibility to fracture when subjected to high rates of deformation. This work investigates toughening mechanisms for PHB via incorporation of functionalizede lastomeric components into the PHB matrix. A compatibilizer was investigated to improve the interfacial adhesion between the incompatible elastomer and plastic phases. The toughened PHB was characterized through their thermo-mechanical, rheological and morphological analysis. The resulting toughened PHB showed more than5 times improvement in impact strength over virgin PHB with around 60 % loss in modulus. The loss of modulus was recovered to permissible extent through incorporation of titanate modified montmorillonite clay. The hydrophilic clay was modified by titanate-based treatment to make it organophilic and compatible with the polymer matrix. Nanocomposites with this modified clay exhibited more than 275% improvement in impact properties with around 40% reduction in modulus in comparison with the virgin PHB bioplastic.

Oxypolypropylene as a Radical Initiator for the Production of Polypropylene Grafted Copolymer
V. Dang, R. Fezza, C. Shu, C. Song, T. Phan, May 2005

Oxypolypropylenes are high MFR propylene polymers that contain bound peroxide functionalities which can be used as polymerization initiators to produce polypropylene grafted copolymers. Upon heat treatment, the peroxides functionalities in the Oxypolypropylene act as a source of free radicals, reacting with unsaturated double bond of the monomers. The grafting reaction is carried out in the solid state in a reactor. The advantage of grafting via Oxypolypropylene is that it eliminates expensive and environmentally unfriendly organic peroxide. A number of monomers have been grafted on Oxypolypropylene, including vinyl acetate, vinyl pyrrolidinone, methacrylic anhydride, maleic anhydride… Applications of these grafted copolymers in nylon blends or in a glass reinforced formulation are also discussed.

Polylactides. A New Era of Biodegradable Polymers for Packaging Application
Rafael Auras, Bruce Harte, Susan Selke, May 2005

Polylactide polymers have garnered enormous attention as a replacement for conventional synthetic packaging materials since they are biodegradable, compostable, and recyclable. In this study, commercially available PLA films, bottles, and trays were evaluated. PLA films show better ultraviolet light barrier properties than polyethylene, but were slightly worse than polystyrene (PS) and polyethylene terephthalate (PET). PLA films show better mechanical properties than PS, and comparable to those of PET. PLA has lower melting and glass transition temperature than PET and PS. Solubility parameter predictions indicate that PLA will interact with nitrogen compounds, anhydrides, and some alcohols, and it will not interact with aromatic hydrocarbons, ketones, esters, and water. In terms of barrier, PLA showed O2 and CO2 permeability coefficients lower than PS and higher than PET. The amount of lactic acid and its derivatives that migrate to food simulant solutions from PLA was much lower than any of the current average dietary lactic acid intake values reported by governmental organizations.

Polynanomeric Composite Technology Applied to Environmental Filtration Processes
Laura Lu, Samra S. Sangari, Lambros Georgoulis, James C. Seferis, Daniel Luchtel, May 2005

Composite filtration technology can be implemented less expensively to prevent fossil fuel burning power plants and nonroad and highway heavy-duty engines from releasing green house gases and air pollutants directly into our environments. Carbon-carbon composites (CCCs) were investigated for CO2 filtration from flue gas streams and air pollution filtration such as nitrogen oxide and hydrocarbons from diesel fuel emission. The porous structure of CCC filters was made of chopped carbon fibers and phenolic resin going through curing, pyrolysis and activation. In this study, CCC filters were synthesized under different combinations of pyrolysis and activation times. The structural, physical as well as thermal properties of CCC filters were studied: Scanning Electron Microscopy (SEM) showed the porous structure of CCC filters. Sorption and thermal swing was used for the surface area and adsorption capacity measurements. From the thermal gravimetric analysis (TGA), the thermal properties of CCC filters were investigated. The gravimetric processing has been shown to impact significantly on the filtration performance of CCC filters.

Portable, Tube-Based XRF Analyzer for Quick PPM-Level Metals Analysis in Polymers
R. Koch, B. Hubbard-Nelson, K. Russell, D. Sackett, May 2005

A portable tube-based XRF analyzer provides fast, confident screening and sorting of polymers during manufacture, recycling and disposal. It rapidly sorts PVC, Br- or Sb-based plastics and quantifies Cl, Br and Sb content with excellent detection limits. The analyzer also quantifies As and other toxic metals such as Pb, Cd, Hg, and Cr for compliance with ECD2002/96/EC & RoHS (Restriction of Hazardous Substances) for WEEE (Waste Electrical/Electronic Equipment). X-ray tube-based XRF systems replace the need for multiple isotopes and eliminate their burdensome radioactive source regulatory issues, particularly for interstate and international travel. Integrated PDA & iPAQ Pocket PC affords flexible software, exceptional graphical user interface & conventional MS windows architecture. This also makes available value-added accessories like wireless email and data transfer, global positioning, binary storage, and multiple language display.

Recycling of Butyl Rubber by Ultrasonic Devulcanization
Wenlai Feng, A.I. Isayev, May 2005

The recycling of butyl rubber based tire-curing bladder was carried out by means of a grooved barrel ultrasonic extruder. Die pressure and ultrasonic power consumption were measured as a function of flow rate and ultrasonic amplitude. Gel fraction and crosslink density of the ultrasonically devulcanized rubber were substantially reduced. The latter caused some reduction in gel fraction and crosslink density in the revulcanized rubber. The mechanical properties of the revulcanized rubber, dependent on processing conditions during devulcanization, were compared with that of the virgin vulcanizate. Good mechanical properties of revulcanized rubber was achieved with 86% and 71% reduction of the tensile strength and the elongation at break respectively, and with modulus increased by 44%. The devulcanized rubber was found to contain tiny gel particles of a wide size distribution with a predominant size of less than 4µm.

Strategies for the Manufacture of Low-Density, Fine Celled PBS Sheet Foams Blown with CO2 Using an Annular Die
Donglai Xu, Chul B. Park, Robert G. Fenton, May 2005

This paper presents strategies for the manufacture of low-density and fine-celled biodegradable polyester foam sheets blown with CO2 using an annular die. The basic approach is to minimize gas loss by completely dissolving gas, suppressing an initial hump, promoting the number of cell layers across the foam thickness and optimizing the processing temperature. Parametric experiments with various annular dies have been performed to verify the feasibility of the proposed strategies. Low-density biodegradable polyester sheet foams with a volume expansion ratio of over 20 have been successfully achieved even with the gaseous blowing agent CO2.

Study of the Loading Capacity of Biodegradable Core-Shell Nanospheres
Kirk Walsh, Balint Koroskenyi, Stephen McCarthy, May 2005

Core-shell nanospheres have recently emerged as novel drug delivery systems. The performance of the particles depends upon several characteristics including loading capacity, size, composition, etc. The amount of drug that can be loaded into the core is a function of several factors, such as the size and hydrophobicity of the core, the hydrophobicity of the encapsulant, and specific interactions. These parameters are used to optimize the performance of the formulations. In this work, we studied the loading capacity of biodegradable nanospheres as a function of the size of the nanospheres and hydrophobicity of the encapsulant using encapsulants of varying hydrophobicity and different molecular weight linear amphiphilic block copolymers of pullulan and polycaprolactone (PCL). The established relationship is a useful tool in predicting the loading capacity for other substances based on their hydrophobic character and hence in designing an optimum drug delivery system.

Surface Modification Techniques for Optimizing Adhesion to Automotive Plastics
Rory A. Wolf, May 2005

Automotive plastics with a low polarity, such as PE, PP, TPO, POM, PUR and PTFE typically require surface treatment when decoration is required. Metallic surfaces may also require cleaning to remove low molecular weight organic materials prior to decoration. Once the above-mentioned interior and exterior grades of substrate surfaces are cleaned and activated, printing, gluing and painting are possible without the use of adhesion-promoting primers. This paper describes the latest innovations in three-dimensional surface treating technology for plastics finishing which address the need to advance adhesion properties, increase product quality, and achieve environmental objectives within the automotive industry. These innovations include advanced thermal and non-thermal discharge treatment processes for raising the polarity of surfaces to be painted, bonded, decorated, laminated, printed or to have tape applied.

The Effect of Preparation Method on Mechanical Behaviour of Chitosan Composites
C. Cochrane, Q. Gan, S.J. Allen, May 2005

This work investigated the addition of Polycaprolactone (PCl) and Sodium Tripolyphosphate (TPP) to the biodegradable polymer chitosan, via the preparation method of dry blending, followed by compression. The improvement in mechanical properties and suitability for biomedical applications were determined through the changes in surface characteristics, crystallinity and mechanical properties. It was found that the differences in melting temperature, contact angle and phase transition temperatures (tan ?) were highly dependent on the ratio of PCl and chitosan in each blend.








spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net