SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Recycling

Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Biobased Poly(trimethylene terephthalate): Opportunity in Structural Composite Applications
A. K. Mohanty, W. Liu, L. T. Drzal, M. Misra, Joseph V. Kurian, Ray W. Miller, Nick Strickland, September 2003

Injection molded composite materials as fabricated from chopped glass fiber and poly(trimethylene terephthalate) PTT are evaluated through their physico-mechanical and thermo-mechanical analysis. The fiber-matrix adhesion in composite is studied through environmental scanning electron microscopy (ESEM). The tensile and flexural properties including impact strength of virgin polymer improved drastically on fiber reinforcements. Simultaneous improvement of both stiffness and toughness of composite materials show strong potential in structural applications. The high heat distortion temperature HDT (>220 degree C) of such composite materials possess strong promise in automotive and building product applications.

Carbon/Epoxy Composites for the Lamborghini Murcielago
Attilio Masini, Paolo Feraboli, September 2003

Development of the carbon/epoxy body panels and structural components of the Lamborghini Murcièlago is discussed while use of aerospace grade technology and materials is justified for this particular application. Laminate design and stacking sequence is reviewed and the use of woven fabrics over directional tape is motivated. Engineering solutions for tooling operations in order to achieve class A surface certification are analyzed. Design for environmental aging as well as accelerated degradation tests are described. Hybrid adhesive bonding as sole method of joining the composite body components to the tubular steel chassis is reviewed.

Impact-Tolerant SMC Resins for Demanding Structural Applications
Sean P. Walsh, September 2003

Composite materials have penetrated the transportation market where their lower total component cost and lighter weight have made them the material of choice. As designers and engineers become more comfortable with the use of composites they are being specified in more demanding load-bearing applications. Structural thermoset resins combine high modulus the ability to efficiently translate reinforcing fiber properties with the elasticity to withstand the high stresses and strains of load bearing applications. A new generation of impact-tolerant structural thermoset resins has been developed that have the high modulus critical to achieving maximum structural properties yet exhibit the toughness of thermoplastics. These tough thermosetting resins absorb high transient loads without suffering micro-structural damage that can propagate to failure after repeated mechanical chemical and environmental exposures. Cast resin properties and reinforced composite properties show the potential of these materials as a cost-effective option for transportation applications. Efficiency of reinforcing fiber utilization allows weight reduction without sacrificing structural performance. These new impact-tolerant materials can be processed with standard techniques at the production rates typical of high volume processes such as SMC at very low scrap rates. Composite formulation latitude allows tailoring the mechanical dimensional and appearance properties that typically make composite materials an economically attractive choice.

Renewable Source Materials Phase II
Peter W. Vaccarella, September 2003

In phase I soy-based polyesters were introduced in the form of sheet molding compound (SMC) to be used in farm equipment such as combines. In phase II soy-based polyester will be evaluated in the spray- up infusion and resin transfer molding (RTM) processes for similar types of application. Each system was evaluated at room temperature and 120 ° F for surface quality cure and molding ability. This paper will discuss shrink control for room temperature cured parts and surface quality as compared to automotive standards. Physical property data will also be compared to standard polyesters and SMC used in these fields.

"Green" Bio-Composites: Moving Towards More Eco-friendly Structural Automotive Parts
L. T. Drzal, September 2002

PowerPoint Presentation at ACCE 2002.

Bio-based Thermoset Resins and Their Composites
M. Misra, September 2002

PowerPoint Presentation at ACCE 2002.

Growing and Processing Natural Renewable BAST Fibers for Natural Fiber Composites
Hugh S. McKee, September 2002

PowerPoint Presentation at ACCE 2002.

Soy Biobased Materials for Automotive Applications
Professor Richard Wool, September 2002

PowerPoint Presentation at ACCE 2002.

Influence of Consolidation and Forming Parameters in the Molding of Continuous Fiber Reinforced Thermoplastic Composites
Gilbert Lebrun, September 2002

Continuous fibre reinforced thermoplastic (CFRTP) composites offer many advantages over thermoset composites and metallic materials especially their resistance to corrosion their recycling possibilities and their high specific stiffness. The shaping of these materials into complex forms however requires a good knowledge of the combined behaviour of the molten thermoplastic matrix and of the fibres because of the high intra and interlaminar shear deformations involved during the forming process. In this paper the influence of laminate consolidation parameters on the microstructure and mechanical properties of the laminate are first presented. Next the deformation mechanisms induced in the laminate in typical forming conditions are presented and discussed in regard to their influence on the physical and aesthetic properties of the moulded part. Numerical moulding predictions obtained from a commercial code are finally presented.

The Use of UV Light for Surface Cleaning for Painting and Adhesive Bonding of Composites and Metals
Michael J. Rich, September 2002

Contemporary vehicles utilize a mix of materials in their construction consisting of metals plastics and composites. These materials must possess suitable surface properties to achieve desired performance when these parts are adhesively bonding or painted for field service. Surface preparation methods now in place oftentimes use solvents or caustics an increasingly unacceptable approach in an era of mounting environmental regulations. New methods of surface preparation are called for that are environmentally benign and economically feasible while meeting the stringent quality standards of the automotive industry. The use of energetic ultraviolet light is emerging as a promising technology to compete with the old methods of surface preparation. This paper reports the utility of using energetic UV light to generate appropriate surface chemical composition on plastics composites and metals for subsequent painting or adhesive bonding operations. UV treatments have the potential to replace the old methods of treating assorted materials used in the automotive industry in an environmentally responsible and cost-effective manner.

A Plasticating Screw Design for the Reprocessing of Multi-Layer or Multi-Material Plastic Formulations
Robert Malloy, Anthony Filip, Mark Colella, May 2002

Recycling or reprocessing of “multi-layer” or “multi-material” plastic products is a particular problem for plastic compounders or recyclers. Examples of multi-layer plastic products include painted or coated plastic items, such as automotive body panels, or multi-layer plastic packaging, such as that used in high barrier applications. In each of these cases, the coating or multi-layer structure is utilized to enhance either the product's overall performance or appearance. Unfortunately, the presence of other material layers will generally have a negative impact on the recyclability of the primary thermoplastic material as they often act as incompatible contamination. For example, most of the paints or coatings used in the automotive industry are thermosetting in nature and act as solid particulate inclusions in the recycled matrix material. Methods to remove coatings from coated plastic parts have been developed, but are not always cost effective. As an alternative, these complex material constructions can sometimes be effectively recycled if the contaminating layers can be reduced in particle size and effectively mixed into the continuous thermoplastic matrix material. A single screw mixing or “grating” section has been designed and evaluated experimentally in this study. Experimental trials were conducted using reground, painted thermoplastic olefin automobile bumpers. The reground bumper scrap was extruded using a single screw equipped with this grating sections, and several more conventional extrusion screw designs. The paint flake size distribution of the extrudate, and the physical properties of samples molded from the extrudate were evaluated for each screw design, both with and without melt filtration.

Application of Thermoplastic Elastomer Material Testing Data for Automotive Body Seal Analysis
Linhuo Shi, May 2002

Material recycling requirement gradually opens the automotive body sealing market to thermoplastic elastomers (TPE), which is primarily dominated by EPDM thermosetting elastomers. Due to special material behaviors of elastomers, careful attentions should be taken when analyzing the body seal performance using material testing data, especially for TPE materials. This paper will address some of the issues by analyzing body seal products using TPE materials. The general guidelines for body seal analysis and result evaluation will also be discussed.

Acrylate Elastomer Modified Polyolefinic TPEs
Nisha Patel, Satish Sharma, May 2002

Soft polyolefinic TPEs are increasingly being favored over PVC based TPEs for automotive interiors. The major drivers for this change are the recycling and environmental aspects of PVC. Some strengths of polyolefinic TPEs are good low temperature performance, retention of properties after exposure to sunlight and high temperatures, low fogging, and little or no odor. The challenges in switching from PVC to polyolefinic TPEs involve attaining the desired melt processing characteristics and the mechanical and aesthetic properties at a relatively low cost. This paper will discuss Eliokem's use of a specialty acrylate elastomeric modifier in designing polyolefinic TPEs for automotive interiors and other applications

Analysis of Carpet Recycle Streams Using Differential Scanning Calorimetry, Thermogravimetric Analysis and Gas Chromatography
John J. Tria, Kanda Kumar Balasubramanian, Michael K. Goodin, May 2002

In order to make an injection moldable product with consistent properties from recycled carpeting, quantitation of the polymeric and non-polymeric components of the carpet feed stream is required. Feed mixtures containing nylons, polypropylene and PET as well as latex and calcium carbonate from backing material have been studied. A combination of DSC and TGA measurements is shown to provide compositional data on both polymeric and non-polymeric components in a rapid and inexpensive manner. More exact determination of polyamide components is accomplished using hydrolysis and derivatization to prepare samples for gas chromatography.

Analysis of Silicone Polymers at Trace Levels by Pyrolysis Gas Chromatography/Mass Spectroscopy
Myer Ezrin, Gary Lavigne, May 2002

Silicone polymer release liner surfaces on paper, for self stick stamps and labels, become contaminants in paper recycling. Low print adhesion is one major problem limiting the inclusion of silicone release liners in recycling feed stock. A very sensitive method of analysis of silicone polymer during and after recycling employs pyrolysis GC/MS. The analysis provides a measure of siloxanes, ignoring inorganic silicon compounds such as silicates. The method also distinguishes between linear and branched polysiloxanes by different pyrolysis products. High sensitivity, to ppb, may be possible using single ion monitoring or selected ion data collection of mass spectra.

CAPE-VIT - A Different View of Education in Plastics Design
H. Elmecker, A.M. Brito, A.S. Pouzada, May 2002

Education for the growing needs of the plastics industry is recognized as needing a different approach that will enable a quicker integration of the graduates in the working world. Under the auspices of the EU programme Leonardo da Vinci a group of universities and institutions developed a course programme and structure for preparing engineers with skills for plastics design and processing with a sound awareness of the environmental issues. Specific characteristics of the course are the project driven methodology and the integration of training periods in the industry as from the first year of the four-year long course.

Investigation of Applicability of Two Biodegradable Polymers for Mechanical Applications
Rolf Koster, May 2002

Three types of specimens of a polyester-amide and a poly-hydroxybutyrate have been tensile and tensile-impact tested. These specimens represent different geometric characteristics; one specimen has a cold weld line. The influence of injection molding settings on tensile behavior was in agreement with tensile-impact results. Embrittlement was found for all specimen types and both materials after 20 months of storage. The beneficial effect of annealing on toughness was shown for poly-hydroxybutyrate specimens without weld line.

Characterization of Molecular Weight Degradation of Polyamides by Gel Permeation Chromatography
Anthony R. Cooper, Gibson B. Pinkerton, May 2002

Polyamides are susceptible to attack by environmental pollutants. The surface layer is degraded and the development of a critical thickness of this layer results in a catastrophic loss of mechanical properties. In this work nylon was exposed to nitrogen oxides and the fracture strength was measured. After a period of no change the fracture strength decreased dramatically. Exposed samples were microtomed and the molecular weight distribution of nylon was determined, as a function of depth from the surface, by Gel Permeation Chromatography (GPC). A critical depth for degradation was established beyond which the specimen exhibited unacceptably low fracture strength.

Composite Films of Polypropylene from Post-Consumer Plastics Waste to Substitute Cellulose Paper
Ruth M. Campomanes Santana, Sati Manrich, May 2002

The aim of this work is to obtain composite films of polypropylene (PP) to substitute paper. The plastic component is PP from mineral water bottle (PPb) collected from municipal plastic waste (MPW) and the filler component is CaCO3. Composite films with weight ratio of PPb and CaCO3 (70:30) were prepared. These films were surface treated by corone discharge. Preliminary results have shown a good printability with pencil and pen ink on these films without treating and an improved printability with ink jet after surface treatment. These films were then compared to cellulose paper by physico-chemical characterizations.

Control of State Parameters in Blow Moulding
R. DiRaddo, P. Girard, I. Laroche, May 2002

The blow moulding industry has achieved a good understanding of the process, which has been in large scale operation since the 1960's. Consequently, control of machine settings such as heater band temperatures, die gap position, die and mould temperatures is quite advanced. However, to date, little work has been done to address the control of state parameters describing material behaviour during processing, such as parison weight and temperature distribution. Control of state parameters is essential as material property changes, environmental factors and machine operating drifts can significantly change the dynamic operating point of the machine.








spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net