Justyn Pyz, February 2020
The process for compounding thermoplastic formulations, both highly filled fiber or mineral products as well as color and additive MB, is comprised of several unit operations. These typically include: feedstock introduction, polymer or polymer/pigment melt-mixing, distributive/dispersive mixing of pigments/minerals/additives, removal of volatiles, and pressurization for die discharge. However, at the end of the day, if the fiber, mineral or pigment is not properly mixed into the polymer matrix, the product is not saleable. While the above list denotes a specific unit operation associated with mixing, mixing occurs along the entire length of the screw configuration in the co-rotating fully intermeshing twin screw extruder. It can range from dispersive mixing (i.e. wide disc kneading block combinations as part of, for example, titanium dioxide incorporation) to distributive mixing (that occurs during melt conveying as a result of rotation of screw bushings). Mixing in the screw bushings results from material reorientation in the apex region and circulatory flow induced by drag forces in the screw channel. The magnitude of the resultant mixing at any point along the screw depends upon the extruder barrel and screw configuration, characteristics of the materials being processed, and operating conditions. The required type and intensity of mixing depends on 1) the process task (talc filled vs. carbon black based MB), and 2) the relative physical and rheological properties of the materials being mixed. Independent of material parameters, mechanical energy input will vary according to basic extruder geometry characteristics (2 lobe vs. 3-lobe, outer diameter/inner diameter ratio [Do/Di]), element configuration, as well as operating conditions such as RPM, throughput rate, degree of fill, and barrel temperature profile. Material parameters such as viscosity, viscosity differential, elasticity, interfacial surface tension, thermal stability, as well as imposed discharge constraints, such as material temperature, particle size, and particle size distribution will dictate as well as limit the type and intensity of mixing necessary (or allowed) to accomplish the unit operation. This presentation provides a further discussion of the issues noted above as well as associated examples especially considering Polyolefins.