SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Applied Rheology

SPE Library content related to rheology
Analysis of Flow in a Spiral Mandrel Die
Walter Michaeli, Peter Blömer, May 2004

For rheological design of spiral mandrel dies the most common calculation methods are segmenting the die into simplified geometries and calculating the characteristics of each flow segment analytically. In the past, one-dimensional flow was considered, but this assumption is deficient especially for low depth segments. In recent investigations IKV has studied three-dimensional flow conditions in a transparent test die and in 3D-FEA calculations. The results of these studies give the key to improve the calculation of spiral mandrel dies significantly.

The Effect of Multilayer Rheology on Coextrusion Die Design
Joseph Dooley, May 2004

Multilayer coextrusion is a process in which two or more polymers are extruded and joined together in a feedblock or die to form a single structure with multiple layers. This paper will discuss the proper techniques for using rheology data to design coextrusion dies based on experimental rheology data for monolayer and multilayer structures.

The Determination of the Best" Viscosity Model for Shear Thinning Fluids from Capillary Rheology Experiments"
W.A. Gifford, May 2004

This paper describes an algorithm used to determine a single viscosity correlation from capillary rheometer experiments. One can choose any one of seven commonly used models for shear thinning fluids. The program then determines the constants in the chosen model which best describes all of the experimental data in a statistical (i.e., least sum of squares) sense. By comparing the results from several different models, one can determine in a matter of minutes the model, which best describes the measured rheology data.

Micromoulding: Process Evaluation
B. Whiteside, M.T. Martyn, P.D. Coates, May 2004

A data acquisition suite capable of monitoring a number of process dynamics at high sampling rates has been installed onto a commercial micromoulding machine. Data was collected during moulding of products of mass 25mg - 0.3mg over a range of process conditions. Results of high shear rate rheology and evaluation of possible material degredation are presented. An investigation into the repeatability of the process has been performed and the paper discusses which process parameter is most suitable as an indicator of moulding conditions which can be used in a process monitoring capacity.

Rheological Characterization of Liquid Crystal Polymers (Xydar-300, Xydar-400 and Xydar-900) Measured in ARES Spectrometer
Kamal K. Kar, Joshua U. Otaigbe, May 2004

An in-depth experimental and theoretical study of many important factors governing the rheological properties of liquid crystal polymers, Xydars (SRT-300, SRT-400, and SRT-900) is carried out by Advanced Rheometric Expansion System (ARES Spectrometer) in the parallel plate-plate configuration over a wide range of frequency, temp and strain level in the steady shear and dynamic conditions.

Rheological Methods for the Detection of Low Levels of Long-Chain Branching in Polyolefins
T.P. Karjala, R.L. Sammler, W. Huang, M.A. Mangnus, M.S. Johnson, May 2004

Several published rheological approaches to detect the presence of long-chain branching (LCB) in commercial polyolefin resins were assessed. In particular, the suitability, feasibility, and applicability of these approaches in detecting low levels of LCB (( 0.01 LCB/1000C) were the basis of the assessment. Nine methods were evaluated using two sets of metallocene polyethylenes.

Rheological Studies of Injection-Molded Polyolefin Foams
Xue Chen, Marie-Claude Heuzey, Pierre J. Carreau, May 2004

The rheological properties of molten LDPE and mPE foams were measured in small amplitude oscillatory shear flow. The foam samples were prepared by injection molding and the effect of injection conditions on the resultant cell structure is discussed. The linear viscoelastic behavior of the foams is well described by the Palierne emulsion model (1) without the use of any fitting parameter. It is shown that the linear viscoelastic properties of LDPE and mPE foams depend only on the properties of the polymer matrix and on the gas volume fraction.

The Study of Using Vetiver Grass as a Filler in Polypropylene Composites
Y. Ruksakulpiwat, N. Suppakarn, W. Sutapun, W. Thomthong, May 2004

The vetiver-polypropylene (PP) composites were prepared at various ratios of vetiver contents. Vetiver grass was prepared as vetiver leaves and vetiver fiber. The effect of vetiver contents on thermal, rheological, mechanical and morphological properties of the composites were studied. Vetiver grass was treated by chemical treatments and the effect of chemical treatments on these properties was elucidated.

Methods of Expanding Polystyrene to Ultra Low-Density Foam
Chung P. Park, May 2004

Ultra low-density expanded polystyrene is obtained by an optimum formulation or by extended exposure to atmospheric steam. A polystyrene resin is rheologically modified to have both ease of flow and resistance against collapse. The collapse resistance is imparted either by light crosslinking of the resin with a silane compound or by adding a small amount of polyphenylene ether. Extended exposure to steam permits continuous extension of cell walls by reducing orientation. An expanded polystyrene loose fill material having an expansion ratio exceeding 200 has been achieved.

Rheological, Thermal and Mechanical Behavior of Polyolefins/Sea Shells Composites
J. González, M. Candal, C. Albano, M. Ichazo, M. Mayz, A. Martínez, May 2004

The rheological, thermal and mechanical behavior of polypropylene (PP) and high density polyethylene (HDPE) filled with sea shells composites at different concentrations of filler were investigated. The composites were prepared by extrusion and injection molding. Most filler addition to composites promoted a slightly increase on the melt viscosity, improve the tensile modulus and the thermal stability in all composites studied.

Processing and Properties of Foamed HDPE/PP Blends by Extrusion
E. Herrera Tejeda, C. Zepeda Sahagún, R. González Núñez, D. Rodrigue, May 2004

This paper presents a study on the processing condition and characterization of foamed HDPE/PP blends. The blends were foamed with different blowing agent concentrations using a twin-screw extruder. A chemical blowing agent (azodicarbonamide) and activator agent (ZnO) were selected and the morphological, rheological and mechanical properties of the resulting foams are presented.

Novel Impact Modification in Olefin Systems
Anna P. Andrews, Vicky Bryg, Anthony Dean, Paul DeFranco, Ann Panek, May 2004

Unique additives enable increases in the Gardner impact strength of polyolefins by a factor of 10 while maintaining up to 90% of the material flexural modulus. The effects of resin and additive loading level are addressed in a statistically designed experiment. Physical performance, rheological effects, thermal characterization, and morphological characterization are reported.

Dynamic Rheological Properties of Polypropylene Containing Thermoplastic Elastomer Compounds
W.G.F. Sengers, P. Sengupta, J.W.M. Noordermeer, A.D. Gotsis, May 2004

The dynamic rheological properties of two types of thermoplastic elastomer (TPE) compounds were studied at ambient and processing temperatures. The linear viscoelastic properties of Thermoplastic Vulcanisates (TPV) and PP/SEBS compounds can be described using models based on mechanical mixing rules. The results were evaluated as a function of composition.

Molecular Dynamics Simulation of Nano-Scale Polymeric Rheological Properties and Extrusion Flows
Rong-Yeu Chang, Jenn-Jye Wang, May 2004

In this work the rheological properties of polymer have been studied by molecular dynamics simulation. Couette flow with various shear rates are used to investigate the degree of slip, shear viscosity and normal stress difference. The fluid consists of chains of n-hexadecane and is confined between two structured gold atomic walls. Isothermal simulations (350K) of 4 to 1 unsteady extrusion flow with various extrusion rates are conducted.

The Effect of Stabiliser Type and TiO2 Concentration on the Rheology of uPVC Profile Formulations
W.C. Yap, A.C. Ruddy, K. Halliwell, G.M. McNally, W.R. Murphy, May 2004

A range of unplasticised polyvinylchloride (uPVC) profile extrusion grade formulations, containing calcium/zinc, organotin and lead based stabiliser systems were blended with different concentrations of TiO2. Rheological analysis showed that the concentration of TiO2 (2phr - 8phr) had little effect on viscosity over the shear rate (200-1000s-1) and temperature range (170 – 190°C) studied. Mechanical analysis showed higher tensile and flexural modulii for the organotin stabilised formulations.

Medical Grade Copolyesters for Profile Extrusion
Daniel C. Cobb, Thomas J. Pecorini, Marc A. Strand, Eric J. Moskala, May 2004

Resins used in profile extrusion require high viscosity at low shear rates to improve melt strength and low viscosity at high shear rates to prevent melt fracture. This paper discusses the development of copolyester resins with the desirable rheological properties, as well as good optical and physical properties. The processing, biocompatibility, and sterilization of these resins will also be discussed.

Influence of Barium Sulphate on Rheological Behaviour and Mechanical Properties of Medical-Grade PVCs
J. Godinho, I. Moore, A.C. Ruddy, G.M. McNally, W.R. Murphy, May 2004

Barium sulphate (BaSO4) is widely used as a radiopaque additive for medical grade PVC tubing in surgical procedures. The rheological characteristics and mechanical performance of two different medical grade PVCs containing BaSO4 (10-15 % w/w) having two different mean particle sizes (1 and 40 micron) was investigated. The results show significant change in melt viscosity, tensile properties and phase transitions (Tan ? max) with increase in BaSO4 concentration.

Mechanical and Thermal Characterization for Sterilized Medical Elastomers
Tahua Yang, Sherwin Shang, Lecon Woo, Craig Sandford, May 2004

We have applied thermal, mechanical, and rheological techniques in the product development for medical elastomers with success. In this presentation, examples of actual product application will be used to illustrate the utility of these techniques and to demonstrate the derived information that was used in developing successful elastomeric related medical products.

Continuous Process for Recycling of Polyurethane Foam
Sayata Ghose, A.I. Isayev, Ernst D. von Meerwall, May 2004

A continuous process for decrosslinking high resiliency polyurethane foam in an extruder with ultrasonic devices was developed. Rheological, structural and NMR relaxation and diffusion characterizations of decrosslinked foam were performed. The decrosslinked foam was blended with the virgin polyurethane rubber (PUR) and cured and the blend properties were investigated.

Effect of Barium Sulphate on Rheological Behaviour and Mechanical Properties of Metallocene Catalysed Polyethylenes used in Medical Devices
J. Godinho, I. Moore, G.M. McNally, W.R. Murphy, May 2004

The incorporation of radiopaque barium sulphate (BaSO4) in medical tubing products is a challenge to extrusion processers. The effect of BaSO4 concentration (0-25% by weight) on the rheology and mechanical properties of three different metallocene catalysed polyethylenes were studied. The results show significant change in melt viscosity, tensile properties and phase transition (Tan ? max) with increase in BaSO4 concentration.







SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use

Links

Locations

SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net