SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
SPE Library content related to rheology
Study of Flow Marks during Injection Molding
Guojun Xu, Kurt W. Koelling, May 2002
In this paper, alternate and synchronous dull and glossy flow marks are studied. The effect of rheology, flow front velocity, mold geometry, melt temperature, mold temperature, and mold surface coatings on flow marks was studied. For the alternate flow marks, it was found that the flow marks did not occur at high injection speeds. The generation of the flow marks is explained by entry viscoelastic instability. For the synchronous flow marks, it was found that coating these surfaces could not prevent the occurrence of the flow marks, although it could alleviate them. Slip is not the cause of the generation of the synchronous flow marks.
Three-Dimensional Cae Analysis of Underfill Flow of Flip-Chips
Rong-Yeu Chang, Chi-Chen Hung, Wen-Hsien Yang, May 2002
This paper presents a true three-dimensional simulation of the underfill flow in the encapsulation of flip-chips. The SIMPLE-based finite volume method (FVM) is combined with the volume of fluid (VOF) method to solve the two-phase flow field and to track the advancement of the resin front during underfilling process. Since the underfill encapsulation is driven by the capillary force, the continuum surface force (CSF) model is employed in the present approach to calculate the surface tension at the resin front surface. In addition, the chemorheology of the encapsulant is also included to consider simultaneously the effects of temperature, shear-rate and degree-of-cure on the underfilling patterns. Several test examples with different dispensing locations or molding temperatures are analyzed to demonstrate the capabilities of the present approach.
A Tubular Melt Extrusion of Poly(Vinylidene Fluoride): Structure/Process/Property Behavior as a Function of Molecular Weight (Mw)
Jiannong Xu, Matthew Johnson, Garth L. Wilkes, May 2002
Five poly(vinylidene fluoride) (PVDF) resins, R1-R5, of narrow molecular weight distribution (ca. 2.0) but of different weight average molecular weights Mw’s (85 – 250 Kg/mol) were melt extruded in tubular film form with a blow up ratio (BUR) of unity. The objective was to produce a stacked lamella structure that could serve as a precursor for a later process step that converts this film into a microporous membrane. Four of the resins were in pure form R1-R4 whereas the fifth, R5, contained a small amount of plasticizer to facilitate processing due to its high molecular weight. Comparisons were made of how Mw influences film morphology under a given set of process conditions. WAXS systematically showed an increase in crystal orientation as Mw increased for fixed conditions. A Carreau-Yasuda fit of the melt rheological data provided a characteristic relaxation time and this variable was correlated to the respective morphologies produced. It was shown that nearly spherulitic-like textures could be induced with the lowest Mw material whereas highly concentrated fibril nucleated morphologies were promoted with the highest Mw under identical process conditions. It was demonstrated that by blending the resins, R2 & R4, the desired stacked lamellar structure could be fine tuned with regard to morphological features.
Viscosity Measurements on Polypropylene Mixed with Supercritical Fluid at High Shear Rates
Hung-Yu Lan, Hsieng-Cheng Tseng, May 2002
Viscosity of polymer melts can be effectively reduced by adding constituent of supercritical fluid (SCF) during plastic processing. The viscosity reduction depends on the amount of SCF added and also the magnitude of shear rate. This research modified a conventional injection-molding machine to investigate the rheological behavior of PP/SCF mixture. By measuring the pressure and flow rate of the melt at a slit die which was attached in front of the nozzle, the true viscosity can be obtained after making Bagley and Rabinowitsch corrections. By using this machinery, the shear rate can be achieved as high as order of 1E4 1/s .
Melt Index from a Single Pellet
John D. Clay, May 2001
The melt index of a single pellet is measured by combining experimental viscosity determination and simple modeling of the flow in the melt indexer. Special parallel plates are used to quantify the shear rheology of a 5 mg sample, the viscosity data is fit to a Power Law model, and the melt index is calculated. Results from this technique are compared to the results from actual melt index measurements for polyethylenes with a range of melt index values.
Binary Blends of EVA and Metallocene-Catalyzed Ethylene-A-Olefin Copolymers for Film Applications
M. Kontopoulou, J.A. Lee, L.C. Huang, W.E. Baker, A.M. Henderson, May 2001
Blends of Ethylene-Vinyl-Acetate copolymers (EVA) with metallocene based ethylene-a-olefin copolymers have been studied, with the purpose of exploring their properties and potential in film packaging applications. The effect of blend composition on rheological properties, heat seal, optical and tensile properties has been examined. It is shown that depending on their composition, these blends can offer a good balance of properties and processability.
Compositional Investigation of the Solid-State Rheological Behavior of Dynamically Vulcanized EPDM/I-PP Elastomers
Kathryn J. Wright, Alan J. Lesser, May 2001
This study investigates mechanical behavior and reversibility of dynamically vulcanized EPDM / i-PP blends. The composition of these elastomers dictates their morphology, which in turn controls their mechanical behavior. Six compositions are examined under dynamic loading. Dynamic mechanical responses are examined in terms of the Payne effect as a function of composition, cure state, and i-PP molecular weight. The Kraus model is applied and the resulting parameters are explained as a function of morphology.
Shear and Elongational Rheology of Some Polyolefins of Different Molecular Parameters
John R. Collier, Simioan Petrovan, Bijan Seyfzadeh, Parag Patil, May 2001
Processing of polymer melts and solutions is strongly influenced by both shear and elongational rheology. Molecular weight, molecular weight distribution, degree of branching, branch length and their distribution on the host chain are influential on both. In this work the elongational viscosity and first normal stress coefficient are related to molecular parameters of some polyolefins.
Measurement of Entrance Pressure Drop of Polystyrene/Supercritical CO2 Solutions
Anle Xue, Costas Tzoganakis, May 2001
Two slit dies with sudden contraction ratios of 4:1 and 18:1 were designed to investigate the effects of pressure and supercritical carbon dioxide (scCO2) content on the entrance pressure drop and rheological properties of PS/CO2 solutions. scCO2 was found to decrease the entrance pressure drop as well as the shear and extensional viscosities of PS.
Process Monitoring at the National Institute of Standards and Technology: Celebrating 100 Years of Measurement Excellence
Anthony J. Bur, Kalman Migler, Steven C. Roth, May 2001
Two events that coincide in the year 2001 are the NIST centennial year anniversary and the inauguration of the SPE Special Interest Group on Process Monitoring and Control. To celebrate these two events, this paper will highlight polymer process monitoring activities at NIST describing the full range of measurement and sensor developments for real-time monitoring of resin temperature, rheology, morphology, molecular orientation, and dielectric properties of polymers, filled polymers and polymer blends.
Rheology as a Tool for the Polymer Scientist
Montgomery T. Shaw, May 2001
Rheology is a discipline that has applications both for analysis of polymer structure and for correlation and prediction of processing behavior. As such, rheology has impact over the entire development of a commercial resin. Described are several projects in the areas of polymer blending, aging and fabrication that illustrate the important role that rheology has played in their execution.
Influencing the Foam Structure of CO2-Blown Polypropylene Sheets
Robert Heinz, Walter Michaeli, May 2001
An investigation has been conducted to analyze the influence of different process parameters as well as material properties on the structure of CO2-foamed polypropylene sheets. The use of a linear and a branched polypropylene shows the influence of the rheological melt properties on the foam density and the structure. Using the branched polypropylene, densities down to 140 kg/m3 have been achieved. These samples also show a finer and more homogeneous foam structure than the samples made with the linear polypropylene.
Conductive TPO for Electrostatic Painting
Susan Babinec, Ray Lewis, Robert Cieslinski, May 2001
The TPO (Polypropylene/Elastomer) market for injection molded automotive bumper fascia is driven by cost reduction, a balance of physical properties, ease of processability, and desirable aesthetics. Global volume for this application was approximately 740 MM lbs. in 1999, nearly half of which is electrostatically painted. Decreased application costs, increased productivity, and reduced environmental emissions can be realized through system optimization. This report describes the rheological and morphological phenomena governing the development of a conductive TPO (CTPO) for enhanced electrostatic painting.
Blends of Recycled Polyethylenes and Metallocene Impact Modifiers for Rotational Molding
E. Takács, M. Kontopoulou, J. Vlachopoulos, E. Voldner, K. Nichols, May 2001
This paper describes the development of blends of recycled polyethylenes suitable for rotational molding. The blends consist of recycled post-industrial polyethylene resins and polyolefin plastomer impact modifiers, produced by single-site (metallocene) catalysts. The rheological properties of the blends were found to be favorable for rotational molding. Rotomolded parts provided satisfactory low temperature impact strength and good tensile properties.
Prediction of Transient Material Functions of PP Resins Using the Multi-Mode PTT Molecular Network Model
Jaime Bonilla Ríos, Rodolfo Mier Martínez, May 2001
The transient rheological material functions [?(t,?),N1(t,?),?e(t,?) ] of three PP resins are predicted using the multi-mode Phan-Thien and Tanner (PTT) molecular network model. The study also includes the standard quality properties (MFI, XSP, GPC, and DSC) of the resins. The model was coded in C-language, validated with published data (Phan-Thien, 1978) and then used for the prediction of transient material functions. The predictions are in good agreement with the resins' rheological data.
Rheological Behavior of Modified Polypropylene (PP) with Nitrile Rubber (NBR)
M. Hernández, J. González, C. Albano, M. Ichazo, D. Lovera, May 2001
The rheological behavior of polypropylene (PP) modified with nitrile rubber (NBR), within the composition range of 10-30 wt% NBR content, was studied based on the blend ratio, dynamic vulcanization and additives blending effects. Results indicate all systems show a pseudoplastic behavior with an increasing melt viscosity on NBR content. Dynamically vulcanized blends present similar melt viscosity and lower die swell values than corresponding unvulcanized blends. The rheological behavior was correlated with blend morphology.
Rheological Probing of Structure in Polypropylene / Clay Nanocomposites
D. Marchant, K. Jayaraman, May 2001
Polypropylene/clay nanocomposites have been prepared with a variety of hybrid structures by melt mixing a fixed amount of organically modified clay, different levels of a maleated polypropylene and polypropylene. The structure has been investigated with X-Ray diffraction and transmission electron microscopy. An optimum level of maleated polypropylene is found to yield the greatest degree of exfoliation in polypropylene. The relative viscosity curves reveal a systematic trend with the extent of exfoliation and show promise for quantifying the hybrid structure of the nanocomposites.
The Effect of Blending on the Viscosity Reduction of Recycled Milk Bottle Grade HDPE
Natalia Kukaleva, George Simon, Edward Kosior, May 2001
Post-consumer plastic waste in Australia contains over 50,000 tonnes p.a. of HDPE blow moulded bottles, with half still ending up in landfill. Recycled milk-bottle grade HDPE is known to be too high in molecular weight for processing by injection molding. In this study, the target was to make injection-molded compositions with a content of the recycled material of 75% or higher by blending with commodity plastics. The results of rheological, thermal and mechanical studies of the blends are presented.
Rheology and Processing of TPV's
Wim Zoetelief, May 2001
The rheological behavior of TPV in shear and extensional is studied to help understanding the flow behavior in various processing operations. The TPV's, which are dynamically vulcanized PP/EPDM blends show in shear flow a typical rheological behavior with an apparent yield stress at low shear rates and a shear-thinning viscosity at high(er) shear rates. In extension the TPV melts appeared not to show strain-hardening. This study discusses the observed behavior in terms of composition.
Cure of an Epoxy Thermoset System Modified with Engineering Thermoplastics
M.J. Amaral, A. Espejo, M. Arellano, May 2001
During the cure of a thermoset-thermoplastic blend two-phase morphologies may be formed. The phase separation process may be controlled by manipulation of the rate of polymerization of the thermoset system. In this work, the effect of the addition of different thermoplastics on the rheokinetics of an epoxy thermoset system is presented. The reactive system used was diglycidyl ether of bisphenol-A cured with 4-4' diaminodiphenyl sulfone. The kinetics was followed by differential scanning calorimetry and the change in the rheological properties during the curing by dynamic rheometry.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net