SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Injection Molding
The Challenge of Simulation For Ear-Flow Phenomenon In Injection-Mold Filling
Venny Yang, May 2020
Plastics applications are found in almost all areas of everyday living due to their versatility with an economically attractive choice in the manufacturing industry. Injection molding is the most common manufacturing process for producing plastic parts. However, there is a long-running problem requiring an urgent solution for the industry: to date, prior state-of-the-art predictive engineering tools have always provided unsatisfactory results regarding “so-called Ear-flow”, in which the advance of the flow front in the centre of the cavity is obviously slower than at the edges. Thus, the primary objective of this work is to simulate a reliable Ear-flow for neat polycarbonate (PC) material in injection molded disk via a new Moldex3D Flow solver coupled with the viscoelastic constitutive equation [U.S. Patent Pending in USPTO with Application No. 62/886,539 (2019)].
The Effect of Clamping Force on Product Quality: A Study on Platen Deformation
Wei-Jie Su, May 2020
The clamping force is a critical parameter to the stability of mold during injection molding process. An improper setting of the mold clamping force can adversely affect the service life of movable and stationary platens, tie bars, and molds. Thus, the clamping force is a key factor in product-quality consistency. This study bonded strain gauges to both sides of the movable platen to measure, in real time, strain changes in the platen under different clamping-force settings. The results were assessed using the corresponding cavity pressure and mold separation values to determine the molding clamping force’s effect on product quality (with respect to thickness, weight, and appearance). The findings indicated the following. (1) The mold clamping force is significantly correlated with cavity pressure, mold separation, and platen deformation. A low clamping force can cause mold separation to increase, which in turn results in greater platen deformation. (2) For the prediction of mold separation, strain gauges that are mounted on the movable platen can sufficiently replace displacement transducers that are placed within the molds. In other words, the condition inside the molds can be predicted using sensing devices outside the molds. (3) The analytic results for platen deformation and product quality indicate that an insufficient mold clamping force potentially results in excessive mold separation and platen deformation, causing flashing and an increase in product weight and thickness.
Towards Multi-Tiered Quality Control In Manufacturing of Plastics and Composites Using Industry 4.0
Saeed Farahani, May 2020
One of the most important topics in modern manufacturing, Industry 4.0 is quickly changing the way in which production lines in many industries operate. Industry 4.0 broadly refers to the connection of multiple manufacturing systems into a large system in which those individual systems communicate with one another. With systems connected in such a fashion, manufacturers can easily obtain actionable data from every aspect of their systems and use that data to improve their processes. Generally, Industry 4.0 technologies will vary significantly with application, and as a result, it can be difficult to develop an effective system from scratch. Given the increasing quality requirements demanded of the composites industry, particularly from automotive manufacturers, the development of an effective system to integrate data from the manufacturing process and apply it to advanced quality control methods is critical. Accordingly, we propose the concept of a multi-tiered system that combines machine data, in-mold sensors, external sensors, and a human component for use in plastics or composites manufacturing settings. Using this infrastructure, a multivariant analysis is first conducted to evaluate the advantages and limitations of each data sources in terms of determining process and part deviation. In the second study, the feasibility of developing a framework for monitoring quality of injected parts is investigated using a machine learning approach.
Workflow for Enhanced Fiber Orientation Prediction of Short Fiber-reinforced Thermoplastics
Susanne Kugler, May 2020
In this paper a workflow is proposed for an enhanced fiber orientation prediction in injection molding of short fiber-reinforced thermoplastics. The workflow is easy-to-use, as the final fiber orientation prediction is integrated into the commercial software Moldflow®. For a given material with polymer matrix P and a volume fraction x of fibers, four steps have to be performed: 1) Generating a representative volume element (in the following, referred to as cell) with volume fraction x and mean fiber length, 2) Shearing of the cell using a mechanistic fiber simulation, 3) Calculating the transient fiber orientation tensor and fitting macroscopic parameters and 4) Performing the fiber orientation analysis with the optimized macroscopic parameters in Moldflow®. Based on experimental data, the pARD-RSC model was selected as macroscopic simulation model. It was implemented in Moldflow® via the Solver API feature. The enhanced workflow is validated at the example of two industrial applications with different polymer matrices and different fiber volume fractions. With the proposed workflow, we observe equal or higher accuracy of fiber orientation estimation in comparison to Moldflow® fiber orientation models RSC and MRD.
The Evolution of Screw Design Technology for the Injection Molding Process - Part 1
Timothy W. Womer, November 2011
The screw is the heart of an injection molding process. Over the past several decades, screw design for the injection molding process has played a vital role in delivering high quality and value added plastics parts. That’s where the story begins.
‘Plug-and-Play’ Weight Reduction Solution by Hollow Glass Microspheres
Steve Amos | Baris Yalcin | Andrew D’Souza | I. Sedat Gunes, May 2011
Fillers have been in use since the early days of plastics. Today’s enormous growth of the polymer industry is due to the unique properties of fillers they impart to polymers. Glass bubbles (low density hollow glass microspheres) as fillers have been incorporated into thermoset polymers for decades. They are tiny hollow spheres and are virtually inert. These glass bubbles are are compatible with most polymers. Until recently, their use with thermoplastic polymers has been limited because of high rates of bubble breakage from the high shear forces to which they are exposed during such thermoplastic processing operations as extrusion compounding and injection molding. At issue has been the strength of the glass microspheres.
Aesthetics and Low-Cost Assembly Favour Film Insert Moulding
Prithu Mukhopadhyay, October 1999
It's the package that sells in the market. Decoration of injection moulded parts are no exception. Commonly known decorative methods are screen printing, pad printing, hot stamping or painting. However, to enhance productivity and achieving design freedom, new decorating methods such as Insert Moulding (IM) is gaining popularity.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net