SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Polyphenol-Titania Complex as a Possible Flame Retardant Additive for Polyolefins
Weeradech Kiratitanavit, Zhiyu Xia, Sethumadhavan Ravichandran, Ruchi Bakshi, Jayant Kumar, Ramaswamy Nagarajan, May 2013
Flame Retardants (FR) are often compounded into plastics to ensure fire safety. However, some types of halogenated FR additives are environmentally persistent and toxic to humans. Here we report the development of an alternative FR additive based on polyphenol-titania complex that exhibits a combination of radical scavenging and char forming properties. The thermal stability and heat release capacity of blends of this complex with polypropylene are compared to those containing conventional halogenated FR.
Polyphenylene Ether/Polyamide Masterbatches as a Cosynergist for Exolit®Organic Phosphinates in Flame Retardant Polyamides
Lakshmikant Powale, May 2013
Polyamides are widely used in variety of electrical applications because of their good melt flow, chemical resistance, impact, and electrical properties. For applications requiring a glass-filled polyamide composition, with a high degree of flame retardancy, flame retardant additives must be added to the composition. Metal dialkylphosphinates are the preferred flame retardants for polyamides, but they are expensive and must be used in relatively high concentrations. We have discovered that in glass-filled polyamide compositions, desirable flammability, flow, heat and mechanical properties, can be achieved with reduced loadings of Exolit® organic phosphinates, by including specific poly(phenylene ether) masterbatches in these polyamide compositions.
The Role fo PVC Resins in Sustainable Design
Richard Krock, May 2013
The concept of sustainability is often stated in a number of ways but four core principles appear throughout: Protect the environment, promote human health, conserve resources, and assure social and economic well-being to the global population. PVC resin has intrinsic properties that allow finished products to meet all four of these objectives. PVC resin and products compare favorably to other materials in life cycle assessments when reviewing key impacts of resource and energy conservation, and greenhouse gas emissions. Sustainability assessments at the business level are excellent tools to promote these principles and track performance. This paper was prepared for the Society of Plastics Engineers Annual Technical Conference (SPE ANTEC) Vinyl Session, April 22, 2013 in Cincinnati, Ohio.
MOLDING PROCESS AND SCREW MELT PEAK POINTS T-P SENSOR
Frederick J. Buja, May 2012
From end of screw return melt residence through injection to ejection of a molded part to screw return end time is the thermal dynamic molding process cycle. A micro-bead melt sensor indicates the imposed strains of temperature and radial force strain as melt density “K” electro-motive force (emf) readout. A nozzle melt density sensor profiled consecutive molding cycles of melt fill to final peak pack. The melt pack interruption by screw return time to final mold cure will be presented.
EFFECT OF HIGH TEMPERATURE OXIDATION ON MECHANICAL PROPERTIES OF 2D CF/SIC COMPOSITES
Ali Goodarzi, Hailey Taylor, May 2012
In the field of thermal shielding for aerospace applications Cf/SiC composites are raising great interest, provided that they are protected from oxidation by suitable coatings. Conversely, ultra high temperature ceramics, and in particular HfB2, are among the best oxidation resistant materials known. A coating made of a HfB2/SiC composite (20% weight SiC) was tested as an oxidation protection on a Cf/SiC composite.
CHARACTERIZATION TECHNOLOGIES FOR PHARMACEUTICAL MELT EXTRUSION
Huiju Liu, Peng Wang, Costas G. Gogos, May 2012
Pharmaceutical melt extrusion has attracted much attention recently due to broad applications such as bioavailability enhancement, controlled release and taste masking. This article summarizes the characterization methods utilized in the field of pharmaceutical extrusion, and focuses on three applications: characterization of solid dispersion, process analytical technology (PAT) and solubility measurement of drugs in polymeric materials
ISOTHERMAL GROWTH RATES OF NODULAR AND SPHERULITIC STRUCTURES OF ISOTACTIC POLYPROPYLENE
Yousef Ahmad Mubarak, May 2012
A comparison between individual spherulites growth rates and circumferential nodular growth rates for isotactic polypropylene crystallized from the melt was conducted by means of polarized optical microscopy. The obtained results show that both spherulites and nodules grow linearly with approximately similar growth rates at high crystallization temperatures, while individual spherulites grow a little faster at lower crystallization temperatures.
ANALYSIS OF CFC AS ITER DIVERTOR PROTECTOR
Ali Goodarzi, Hailey Taylor, May 2012
Exposure of the carbon fibre composites (CFC) NB31 and NS31 by multiple plasma pulses has been performed at the plasma guns MK-200UG and QSPA. Numerical simulation for the same CFCs under ITER type I ELM typical heat load has been carried out using the code PEGASUS-3D. Comparative analysis of the numerical and experimental results allowed understanding the erosion mechanism of CFC based on the simulation results. A modification of CFC structure has been proposed in order to decrease the armour erosion rate.
THE EFFECT OF POLYBUTYLENE ON SEAL STRENGTH OF EVA/POLYBUTYLENE SEAL BLENDS IN MEDICAL DEVICE PACKAGING
Melissa Diskin, Theresa Hermel-Davidock, May 2012
Packaging seals must be both easily opened and strong enough to maintain integrity. To tailor the strength of Ethylene Vinyl Acetate (EVA) seal layers, Polybutylene (PB-1) is often added. This study examines the effects of seal layer composition, gauge, and sealing temperature on seal strength. A composition and structure/property map for EVA/PB-1 sealant layers was developed. This work helps provide an understanding of material origins of seal strength, so that strength may be easily tailored.
TOWARDS THE UNDERSTANDING OF FIBER TEAR
Yusuf Oni, Theresa Hermel-Davidock, Srini Sridharan, May 2012
This paper presents the results of an experimental study into the mechanisms of fiber tear as it affects blister packaging for medical devices. Physical and chemical characterizations of different paper/film combinations were carried out. Results show hat fiber tear is largely due to the extent of mechanical interlocking of the paper fibers with the adjoining film. Suggesting hat the chemistry on each paper surface can further assist in influencing the extent of mechanical interlock observed.
RECYCLING OF POLYVINYL BUTYRAL (PVB) FROM LAMINATED SAFETY GLASS
Achim Schmiemann, May 2012
Polymeric interlayers like Polyvinyl Butyral (PVB) - films between glass sheets make it safe in case of breakage. But, in the case of recycling, the adhesive interlayer makes the laminated glass difficult to cut. Fortunately, the mostly used PVB is a polymer which can easily been solved in different agents. Using this possibility the present investigations show that recovered PVB can be used in laminated safety glass again.
VISCOELASTIC BEHAVIOR OF HYDROPHOBICALLY MODIFIED HYDROGELS
none, May 2012
The viscoelastic behavior of physically crosslinked copolymer hydrogels synthesized from N, N-dimethylacrylamide (DMA) and 2-(N-ethylperfluorooctane sulfonamido) ethyl acrylate (FOSA) is discussed. These gels have a core-shell nanodomains structure that is responsible for the crosslinks. High modulus (80 – 130 kPa), elongation (1000 – 1600 %), a tensile strength ~500 kPa and toughness (4 – 6 MPa) were achieved. The exceptional properties are due to the reversible nature of the physical crosslinks and their ability to dissipate energy.
HIGH FLOW THERMOPLASTIC POLYESTERS
Robert R. Gallucci, May 2012
A rapid extrusion process has been developed to make high flow polyesters in a melt reaction with a primary alkyl amine. In addition to much higher flow the modified resins show slightly faster crystallization but with reduced impact. This process has also been used to make high flow fiber glass filled PBT. It provides a low cost, fast option to make a wide variety of high flow resins from one staring material.
TROUBLESHOOTING BLACK SPECKS AND COLOR STREAKS IN INJECTION MOLDED PARTS
Mark Spalding, Gregory Campbell, May 2012
Black specks and color streaks in injection molded parts can reduce the yield and profitability of an injection molding process. This paper presents some of the common root causes for black specks and color streaks, and the technical solutions to remove them. Three case studies are presented.
THE CHARACTERISTICS OF IMMISCIBLE POLYMER BLENDS WITH MWNT
Sang Min Kim, Tae Yong Hwang, Jae Wook Lee, May 2012
The electrical, rheological properties and phase behavior of multiwalled carbon nanotube (MWNT) filled with Polypropylene(PP)/Polystyrene(PS) blends were investigated. Based on the matrix polymer, two kinds of masterbatch chips were used to prepare ternary blends, and the influence of the kinds of masterbatch were confirmed on the phase morphology of ternary blends and the distribution of MWNT in ternary blends.
REVIEW OF ATMOSPHERIC PRESSURE PLASMA EFFECT ON THE ACTIVATION OF PLASTICS FOR IMPROVED ADHESION
Thomas S. Williams, Hang Yu, Robert F. Hicks, May 2012
Atmospheric pressure plasma treatment is a key process for surface preparation prior to adhesive bonding of plastics and composites. We observe >50% increase in bond strength and durability by using atmospheric plasma instead of traditional abrasion techniques. Surface analysis by XPS, IR and AFM indicates that the improved adhesion is due to carboxylic acid groups on polymer surface. The implications of this work for polymer adhesion will be discussed at the meeting.
AN IMPROVED FLOW CHANNEL DESIGN FOR FILM AND SHEET EXTRUSION DIES
Masaki Ueda, Makoto Iwamura, Hideki Tomiyama, May 2012
A new flow channel design of die for polymer processing was devised. The design is based on the combination of two conventional die designs to take advantages of both types. The performance of the die with the new flow channel design was evaluated with a flow simulation. It was expected that the new die could obtain more uniform flow rate at the die exit than conventional dies without losing other performances such as residence time.
ENHANCEMENT OF MELT ELASTICITY OF LONG-CHAIN BRANCHED POLYETHYLENE BY BLENDING A LINEAR POLYETHYLENE
Masayuki Yamaguchi, Naoya Mieda, May 2012
The rheological properties are studied for binary blends composed of a long-chain branched polyethylene and a linear polyethylene. It is found that the blends containing a linear polyethylene with high shear viscosity exhibit enhanced elasticity in the molten state, which is attributed to the prolonged relaxation time for entanglement couplings between a linear polymer and a branched polymer.
CHARACTERIZATION OF TENSILE PROPERTIES OF FUSED DEPOSITION MODELLING PROCESSED ABS MATERIAL
Prabin Kumar Chaudhary, S.H. Masood, May 2012
This paper presents the tensile properties of ABS parts fabricated by Fused Deposition Modeling rapid prototyping process. The mechanical behavior of FDM processed ABS parts for engineering applications is dictated by the FDM process parameters. This paper characterizes the tensile properties of ABS parts considering process parameters such as air gap, raster width, raster angle and build orientations. The tensile properties of FDM processed ABS parts are compared with that of injection molded ABS parts.
INVESTIGATION OF DIE DROOL PHENOMENON FOR LINEAR HDPE POLYMER MELTS HAVING IDENTICAL POLYDISPERSITY INDEX BUT DIFFERENT MZ AND MZ+1 AVERAGE MOLECULAR WEIGHTS
Martin Zatloukal, Jan Musil, May 2012
In this work, die drool phenomenon, for two linear HDPE polymers having identical polydisperzity index (Mw/Mw) but different Mz and Mz+1 molecular weight averages, has been investigated experimentally. It has been revealed that increase in linear HDPE chain length promotes the die drool phenomenon and vice versa.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net