SPE-Inspiring Plastics Professionals

SPE Library


SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!
Conference Proceedings
Magazine and Collected Articles
Newsletters (SPE Chapters)
Recycling
Rheology
Podcasts
Technical Article Briefs
Webinars
Plastic Surveys
Diversity. Equity and Inclusion
SPE News
SPE YouTube Channel
Event Recordings

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

The Study for Tagushi Method on the Design of Core Plate and Support Pillar
Wen-Ren Jong, Yu-Wei Chen, Cheng-Hao Lin, May 2013

This study explored the structural characteristics of the entire mold in the plastic injection molding process, conducted experiments by changing the core plate thickness, number and position of support pillars, and measured the strain value of the core plate deformation during the injection molding process using a strain gauge. In addition, by combining CAE (Computer Aid Engineering) software, this study verified the experimental and simulated trends’ accuracy before adding the Taguchi method for the analysis of the simulated experimental design planning. We used CAE to analyze the deformation of core plate under different parameters and studied the core plate thickness optimization and support pillar effectiveness without damaging the plastic mold to further enhance the overall mold design.

Effect of Non-Covalent Chemical Modification on the Electrical Conductivity and Tensile Properties of Poly(methyl methacrylate)/Carbon Nanotube Composites
Ozcan Koysuren, Mustafa Karaman, Demet Ozyurt, May 2013

Non-covalent chemical modification by initiated chemical vapor deposition technique is applied to carbon nanotubes to reduce average agglomerate size of the nanoparticles in the polymer matrix and to improve surface interaction between the composite constituents. Carbon nanotube (CNT) surfaces are coated conformally with thin poly-glycidyl methacrylate (PGMA) polymer film and coated nanoparticles are incorporated in poly(methyl methacrylate) (PMMA) polymer matrix using solvent casting technique. Conformal PGMA coatings around individual nanotubes were identified by SEM analysis. TEM and optical microscopy analyses show homogeneous composite morphology for composites prepared by using PGMA coated nanotubes. FTIR and XPS analyses show the successful deposition of polymer with high retention of epoxide functionality. PGMA coating of carbon nanotubes exhibits improvement in electrical conductivity and tensile properties of PGMA-CNT/PMMA systems when compared with uncoated nanoparticles.

Electrospun polyvinyl borate/poly(methyl methacrylate) (PVB/PMMA) blend nanofibers
Hafize Nagehan Ucan Koysuren, Ozcan Koysuren, Havva Dinc, May 2013

The aim of this study was to prepare polyvinyl borate (PVB)/poly(methyl methacrylate) (PMMA) blend nanofibers by electrospinning process. Polyvinyl borate was synthesized by the condensation reaction of polyvinyl alcohol and boric acid. Since polyvinyl borate itself was not suitable for electrospinning process, polyvinyl borate was blended with poly(methyl methacrylate) prior to electrospinning process. A series of nanofibers with various polyvinyl borate concentrations in poly(methyl methacrylate) were prepared. PVB/PMMA blend nanofibers were characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR analyses showed that boron atoms were found to be integrated into the polymer network. According to SEM images, blending PMMA with PVB decreased the fiber diameter from 218 nm to 93 nm and resulted in appearing the bead structures along the fibers, which increased the surface roughness PVB/PMMA blend nanofiber mats. The water wetting property of PVB/PMMA blend nanofiber mats was influenced by the surface roughness. The contact angle increased with increasing the PVB content of PVB/PMMA blend nanofibers, enhancing the surface roughness. This study also aimed to assess the thermal behavior of PVB/PMMA blends using the thermogravimetric analysis (TGA). The blend composition with the highest polyvinyl borate content was found to be suitable for thermally stable nanofiber formation according to the TGA results.

Micro Injection Molding of Polymeric Substrates for Optimization of Stem Cell Development
John W. Rodgers, Meghan E. Casey, Sabrina S. Jedlicka, John P. Coulter, May 2013

A novel molding assembly was fabricated which offers an effective way to hold silicon tooling during injection molding. Processing parameters thought to be critical to the micro injection molding process were studied through the measurement of replication quality (RQ). To measure such effects, low density polyethylene (LDPE) plates containing microtopography were micro injection molded. RQ was most enhanced by higher mold temperatures and injection velocities, with mold temperature being the most influential parameter. Initial cell culture studies revealed that micro-patterned LDPE altered human mesenchymal stem cell (hMSC) morphology. Rapidly produced microfeatured synthetic polymer substrates have tremendous potential to revolutionize the cell culture industry.

Melt Compounding of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) / Nanofibrillated Cellulose (NFC) Nanocomposites: Properties and Solubility of Carbon Dioxide
Yottha Srithep, Lih-Sheng Turng, Thomas Ellingham, Ronald Sabo, Craig Clemons, May 2013

Biodegradable nanocomposites were prepared using nanofibrillated cellulose (NFC) as the reinforcement and poly (3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV) as the polymer matrix. PHBV powder was dispersed in water, mixed with an aqueous suspension of NFC fiber, and freeze dried. The resulting PHBV/15 wt% NFC was then used as a masterbatch in a subsequent melt compounding process to produce nanocomposites of various formulations. Its properties, such as mechanical properties, crystallization behavior and solubility of carbon dioxide (CO2), were evaluated. Scanning electron microscopy (SEM) images revealed that individual fibers with diameters less than 1 ?m were still clearly distinguishable even though some of the NFC agglomerated. Adding NFC increased the tensile modulus of the PHBV/NFC nanocomposites nearly twofold. Differential scanning calorimetry (DSC) analysis showed that the NFC served as a nucleating agent, promoting the early onset of crystallization. However, high NFC content also led to greater thermal degradation of the PHBV matrix. The solubility of CO2 in the PHBV/NFC nanocomposites decreased and the desorption diffusivity increased as more NFC was added.

Developoment of an Induction Heated Roll-To-Roll Lithography Process
Mary E. Moriarty, David O. Kazmer, Carol Barry, Joey Mead, Christopher Santeufemio, May 2013

Roll-to-roll (R2R) lithography is a continuous manufacturing process used to create patterns on a polymer substrate. Thermally curing of R2R embossed features is time consuming, and is commonly replaced with faster UV or chemical curing. A technique of induction heating the lithography stamp in a R2R process has been conceived for heating, forming and cooling along the perimeter of the roll. The patterned polymer surface needs no additional curing steps, which increases efficiency of the R2R lithography process. The results of initial investigation prove the feasibility of said conceptual process, and initial experiments confirm heating of the lithography roll by induction heating.

High Performance Processing Aid Designed for PVC Foam
Takenobu Sunagawa, Phil Cascais, May 2013

A suitable processing aid (high molecular weight acrylic copolymer) was designed for PVC foam and its remarkable foam-ability was confirmed. The molecular chain entanglement of high molecular weight acrylic copolymer with PVC can enhance the melt elasticity of the PVC melt yielding excellent foamed cell structure and low density. The molecular weight of the processing aid and its dispersion into the PVC melt was optimized to maximize efficiency. A synergistic combination of optimized processing aid, blowing agents, and inorganic fillers creates much lower density while retaining excellent mechanical properties.

Preparation and Measurement of a Water-borne Thermal-insulating Glass Coating for Construction
Yuan Lu, Tai-Liang Han, Zhi-Qi Cai, Xiufang Wen, Pihui Pi, Shouping Xu, Jiang Cheng, May 2013

A Water-borne transparent thermal insulation glass coating for construction was prepared with water- based polyurethane (PU) resin as matrix, functional filler and coating additives by the magnetic stirring. And then the coating obtained was painted on the surface of a piece of standard construction glass. Particle size distribution of the coating was tested and the results revealed that the particles in coating without agglomeration. The thermal insulation effects, optical performance and mechanical performance of coating film were also characterized and measured. In our case, the thermal-insulating effect was measured as better results with the content of nano-ATO as 10%, thermal difference as compared with blank in the same condition was more than 8.7°C. Furthermore, the transmittance of visible light through ATO/PU coating film in the visible light region (380-780nm) was kept more than 75% when the content of the nano-ATO was 10% and the thickness of film was under 50?m. The surface of coated glass is smooth, and the coating will have good prospect in market.

Material Properties and Their Influence on Molding Productivity and Effeciency of Medical Resins
Ian Menego, Mark Yeager, Pierre Moulinie, May 2013

The processability of three medical grade engineering resins were studied in terms of how their physical properties influenced their cycle times. We also compared the variability of molded parts and measured the energy necessary to process each resin. Our results suggest that the glass-transition temperature of the resins have very little effect on the cycle time, while the stiffness (i.e. modulus) of a material – particularly at the cooling temperature - exerts a dominant role. Higher energy consumption was observed for Tritan™ MX710 due to the longer cycle-times. For Makrolon® 2458, molding at three different barrel temperatures revealed that increasing the barrel temperatures actually reduced power consumption during molding.

An Investigation of the Incorporation of Expandable Microspheres into Stretch Wrap
Lauri Kline, Sarah Cheney, Christopher Thellen, Jacob Boone, Allyson Stoyle, Jo Ann Ratto, May 2013

Expandable polymeric microspheres as stretch film components were investigated for pallet wrap applications. Advantages of this novel technology may include reduced fossil-fuel based plastics, solid waste, film density, and weight. Multilayer stretch wrap samples containing microspheres were produced on a stretch film processing line. Optical microscopy showed that the microspheres were intact and expanded 3-5X. Overall, testing showed that tensile, modulus, water vapor barrier, and cling were decreased by the addition of microspheres.

Relationship Between Surface Haze and Crystalline Morphology of Polyethylene Blown Films
Lizhi Liu, Teresa Karjala, Shouren Ge, Mehmet Demirors, May 2013

In previous work, light scattering was utilized to understand the relationship between internal haze and the crystalline morphology of films made by blending LDPE into LLDPE, including the spherulitic and fibrillar morphology. The Morphology Index was introduced to quantitatively describe the morphology change and its dependence on internal haze. In this work, the relationship between surface haze, Morphology Index, and surface roughness obtained from AFM are discussed along with the dependence of surface haze on crystalline morphology (spherulitc vs. fibrillar).

Effect of Aspect Ratio of Multi-Walled Carbon Nanotubes on Electrical, Thermal and Mechanical Properties of Composites with Polycarbonate
Brian Grady, Jiaxi Guo, Frank Yepez-Castillo, Petra Poetschke, Robert Socher, Beate Krause, May 2013

The purpose of this work is to explore the question of how the aspect ratio affects various properties in carbon nanotube/polycarbonate composites. Aspect ratios (prior to mixing) of multi-walled carbon nanotubes varied between 50-500. Tubes were mixed with polycarbonate in a conical twin-screw compounder and then compression molded into flat sheets. Differential scanning calorimetry, dynamic mechanical analysis and tensile properties were measured on the as molded sheets. It was found that the aspect ratio correlated to both the percolation threshold and the rubbery modulus in a simple linear fashion; however with a significant level of scatter. At high aspect ratios, the percolation threshold did not change with aspect ratio which was attributed to a higher relative amount of length reduction during processing. Reducing the amount of mixing, for example, led to a lower percolation threshold which was attributed to less nanotube breakage.

The Effect of Resin Viscoelasticity on Extrudate Swell: Computational Modeling and Experimental Validation
Amy Yousefi, Jens Mueller, May 2013

Parison formation is the most critical stage in extrusion blow-molding process. This is due to the strong effect of extrudate swell on parison dimensions, which consequently affects the thickness profile of the blow-molded part. The swelling due to stress relaxation and sagging due to gravity are strongly influenced by the resin viscoelasticity, die geometry, and operating conditions. Computational modeling tools, once combined with experimental validations, can considerably reduce the development time and cost for the blow-molded parts. In this study, we have developed a dimensionless swell model to estimate the parison swell. The output of the swell model has been used to generate the 3D finite element mesh to predict the parison sag under gravity based on the generalized Maxwell model. The model predictions have been compared with the experimental data for three high-density polyethylene resins in order to validate the developed computational approach. We anticipate that the results of this study can also contribute to the development of similar approaches in fiber spinning and fused deposition modeling.

Failure of HDPE Butt Fusion Joint Due to Poor Manufacturing Practices
Ahamed Shabeer, Gerald F. Zamiski, May 2013

High density polyethylene (HDPE) pipes have been used successfully in applications ranging from potable water lines to chemical fluid transmission for nearly four decades because of its superior mechanical and chemical properties over other thermoplastic piping materials. The standard method of joining HDPE pipe in the field is the butt fusion process. The quality of the butt-fused joints depends largely on environmental and joining surface conditions. The failure modes commonly observed in butt fused joints are poorly fused and contaminated joints and initiation of cracking at stress concentration defects in the fusion weld. In this paper, a case study of fusion joint failure in a fabricated elbow fitting due to poor manufacturing practices is presented. The mechanism and type of failure have been deduced from a detailed morphological examination of the fracture surface. Various factors responsible for a brittle failure of the butt fused joints have been identified. Analytical and thermal testing was performed to identify a specific material characteristic responsible for the failure.

Modeling the Kinematics and Thermodynamic Interactions during the Dispersion of layered Silicates in Polymer melts
Mark D. Wetzel, May 2013

Polymer nanocomposites offer a unique solution to improve desired physical attributes while maintaining other incompatible properties, such as engineering plastics with increased stiffness and strength while maintaining or increasing toughness. Melt processing represents an attractive, economical and flexible route for producing thermoplastic nanocomposites. This paper extends the concepts presented in a previous publication by describing a kinematic and thermodynamic model of the dispersion of layered silicates in polymer melts in simple shear [1]. A Monte Carlo-like method was adopted to simulate the time evolution of a particle size distribution in a shear field using a discrete event approach to drive particle breakup mechanisms. The model incorporates the effects of nanoclay organic modifiers, platelet and tactoid particle geometry, melt viscosity and process operating conditions. The model also provides insights into the factors governing lap shearing and peeling mechanisms of plate-let and tactoid breakup described in the literature.

Effect of Stereocomplex Crystallite as a Nucleating Agent on the Isothermal Crystallization Behavior of Poly (L-Lactic Acid)
Eunhee Kim, Hyun-sup Lee, Jong-Duk Kim, May 2013

Isothermal crystallization behaviors of poly (L-lactic acid) (PLLA) blended with different contents of Poly (D-lactic acid) (PDLA) were studied by wide-angle X-ray diffraction, differential scanning calorimetry and polarized optical microscopy. PDLA molecules added to PLLA formed stereocomplex crystallites in the PLLA matrix. The stereocomplex crystallites stayed unmelted at 190 °C and embedded in the PLLA molten matrix. Isothermal crystallization measurement at 100 °C revealed that the crystal radius growth rate decreased with an increase in the isothermal crystallization temperature. The spherulite growth rate has a peculiar PDLA concentration dependence. PLLA crystallization behavior might be affected by network structure and homogeneous dispersibility of stereocomplex crystal.

Injection Molding of Novel Polyactic Acid/Thermoplastic Polyurethane (PLA/TPU) Blends with Shape-Memory Behavior
Xin Jing, Hao-Yang Mi, Lih-Sheng Turng, Xiang-Fang Peng, May 2013

This paper presents the development of shape-memory polymers (SMPs) based on amorphous polylactic acid (PLA) and thermoplastic polyurethane (TPU) blends. PLA was melt blended with TPU at weight ratios of 20, 30, and 40%, and then injection molded and hot compressed into permanent shapes. Unlike most of the existing SMPs, all three PLA/TPU blends could be formed (via bending, folding, compression, stretching, etc.) into temporary shapes at room temperature without an extra heating step. Upon heating to above the glass transition temperature of PLA (at 70 °C), the deformed parts regained their original shapes fairly quickly. Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) tests showed that PLA and TPU were immiscible. The dynamic mechanical analyzer (DMA) data and the mechanical tests, including tensile, compression, and flexural tests, showed that the PLA/TPU with the 80/20 weight ratio had the best shape-memory properties, even if it was somewhat brittle. The 70/30 PLA/ TPU blend had the best combination of shape recovery and mechanical properties. The shape memory mechanisms for these types of SMPs are discussed here in detail.

The Influence of Compatibilizer Type and Concentration on the Properties of Immiscible Polymer Blends
Christoph Burgstaller, Bernhard Riedl, Wolfgang Stadlbauer, May 2013

The aim of this work was to investigate the effectiveness of industrially available additives (with different chemical nature) for compatibilization of HDPE – PA6 blends in terms of mechanical and rheological properties. Furthermore, the morphology of the samples should be assessed to get deeper insights into the interaction of the compatibilizer with the two immiscible polymers. We found, that it is possible to compatibilize immiscible blends via the addition of industrially available additives, as well as that the chemical nature of said compatibilizers and the concentration in the blend influence the various investigated properties, like impact strength and morphology.

Effect of Extensive Recycling on Flow Properties of LDPE
Huiying Jin, Joamin Gonzalez-Gutierrez, Pavel Oblak, Barbara Zupan?i?, Igor Emri, May 2013

Low density polyethylene (LDPE) was exposed to one hundred (100) consecutive extrusion cycles to simulate the process of mechanical recycling. Collected samples were characterized by means of melt flow index measurements and small amplitude oscillatory measurements to investigate flow properties. The results suggest that thermal degradation and gelation of LDPE occur after extensive extrusion which leads to simultaneous chain scission and crosslinking of the polymer chains. However, after 40 extrusions crosslinking is more dominant than chain scission. Rheological observations were confirmed by solubility studies that showed a pronounced increase in insoluble fraction after 40 extrusion cycles. This indicates that the technological parameters should be modified when processing recycled LDPE, particularly after 40 extrusion cycles.

Initial Verification of an Induction Heating Set-Up for Injection Molding
Stefano Menotti, Hans N. Hansen, Giuliano Bissacco, Peter T. Tang, Christian Ravn, May 2013

Molding of thin and long parts by injection molding leads to special requirements for the mold in order to ensure proper filling and acceptable cycle time. This paper investigates the applicability of embedded induction heating for the improvement of the filling of thin long parts. The object selected for the investigation is a thin spiral. For the complete molding of the component, elevated mold temperatures are required. For this propose a new injection molding set-up was developed, which allows rapid heating of the cavity wall by an induction heating system. The temperature was measured by two thermocouples placed in the die insert. The system was used to heat up the cavity wall with heating rates of up to 10 °C/s. Experiments were carried out with ABS material. The lengths of the object were measured by a suitable measurement set up. The experimental result show that the use of the induction heating system process is an efficient way for improving the filling of the cavity.







spe2018logov4.png
Welcome Guest!   Login

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net