SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Preparation Of Maleated Thermoplastic Starch And Its Graft Copolymers Via Reactive Extrusion
Apoorva Kulkarni, March 2019
This article elaborates the production and characterization of maleated thermoplastic starch (MTPS) and MTPS-g-PETG (glycol modified Polyethylene terephthalate) graft copolymers using reactive extrusion. Maleated thermoplastic starch (MTPS) was prepared by reaction with glycerol and maleic anhydride in a properly configured twin screw extruder. Maleic anhydride (MA) promoted cleavage of the starch molecule resulting in lower molecular weight and increased hydroxyl groups. The % of glycerol grafted on starch backbone was calculated using soxhlet extraction with acetone. MTPS was transesterified with PETG in 30:70 ratio w/w to obtain graft copolymers. Soxhlet extraction with dichloromethane (DCM) showed that around 30 % PETG was grafted on MTPS. The results were confirmed by TGA and FT-IR analysis of residue and extracts. The tensile strength and % elongation of graft copolymer was less as compared to neat PETG but much better as compared to brittle MTPS. Finally, dispersion of MTPS in PETG as continuous phase was observed using the images from scanning electron microscopy.
Reinforcing Phenomena Of Elemental Carbon: The Case Of Carbon Black Vs. Biocarbon In Composite Uses
Arturo Rodriguez Uribe, March 2019
Synthetic elemental carbon (carbon black) has many applications. Carbon black has been used as a coloring agent and filler for rubbers in the manufacturing of tires. However, natural carbon (biocarbon)—traditionally used as a soil amendment— is carving its way towards industrial applications as a natural colorant for plastics and as a reinforcing filler in plastic composites. The reinforcing properties of elemental carbon are well known. However, the mechanism is still described mostly as physical interlocking and in some cases as an affinity between the rubber to specific morphologies present in carbon black. Elemental differences between these two sources of carbon are discussed in this paper as well as the mechanical and thermal properties of both materials when used as reinforcing filler in a plastic matrix.
Piezoresistive Polymer Nanocomposites And Their Foams As Smart Sensing Materials
Trong Linh Hoang, March 2019
Conductive polymer nanocomposites (CPN) filled with conductive filler have become increasingly popular due to their combined flexibility and low cost. This work explored the electrical properties and piezoresistive behaviors of CPN consisted of high density polyethylene (HDPE) and thermoplastic polyurethane (TPU) as well as multiwalled carbon nanotube (MWCNT) and/or graphene nanoplatelet (GnP), and their foams. The study investigated effects of CNT-to-GnP ratio on CPN’s structural morphology, foaming behavior, electrical conductivity, and piezoresistivity. The preliminary tests for the recoverability and reproducibility of the materials piezoresistive measurements look promising, and a reallife application using this material has been demonstrated by constructing a prototype sensing device.
Thermal Properties Of Carbon Fiber Reinforced Polyamide 66 Composites Throughout The Direct Long-Fiber Reinforced Thermoplastic Process
Takashi Kuboki, March 2019
The direct long fiber reinforced thermoplastics (D-LFT) process is a series of processes involving two twin-screw extruders, a conveyer, and a compression molding machine. This study investigates variation on thermal properties of carbon fiber reinforced polyamide 66 (PA66) composites throughout the D-LFT process. Samples were taken from five different locations along the D-LFT process and characterized using thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results suggested that the thermal stability was decreased continuously up to the halfway point of the conveyer, but increased from the half conveyer to the compression molding. The degree of crystallinity was little changed throughout the process, but the crystallization half-time was increased after the half conveyer.
Effects Of Fiber Content On Optical, Viscoelastic, And Thermal Properties Of Cellulose Nanofiber Reinforced Poly(Methyl Methacrylate)
Takashi Kuboki, March 2019
This study investigates the effects of cellulose nanofiber (CNF) content on optical, thermal, and viscoelastic properties of CNF reinforced poly(methyl methacrylate) (PMMA). CNF/PMMA with different CNF contents were prepared through a solution casting method with acetone and compression-molded to create nanocomposite films. The films were characterized using an ultraviolet–visible-near infrared (UV-VIS-NIR) spectrophotometry, dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). The results suggested that the viscoelastic and thermal properties of the CNF/PMMA were increased with the increase of CNF content while maintaining a high degree of transparency and increasing attenuation capability of ultraviolet light.
Injection Molding And Injection Compression Molding Of Ultra-High Molecular Weight Polyethylene: Minimized Thermal Degradation And Delamination Layer Formation
Galip Yilmaz, March 2019
Ultra-high molecular weight polyethylene (UHMWPE) in powder form was processed using injection molding (IM) with different cavity thicknesses and injection-compression molding (ICM). Tensile tests and impact tests showed that the ICM samples were superior to those of IM. Increased cavity thickness and ICM were helpful for improving the mechanical properties due to effective packing of the material. A delamination skin layer (around 300 μm thick and independent of cavity thickness) was formed on all IM sample surfaces while it was absent in the ICM samples, suggesting two different flow behaviors between IM and ICM during the packing phase.
Investigation Of The In-Flow Effect On Weld Lines In Injection Molding Of Glass Fiber Reinforced Polypropylene
Giovanni Lucchetta, March 2019
In the injection molding process, weld lines can occur when two flow fronts rejoin due to either multi-gated molds or obstacles in the mold cavity. The weakness of plastic at weld lines provides serious difficulties for the design and long term durability of injection molded parts. Various methods to reduce the strength loss of weld lines include optimization of material composition, mold design and process conditions. To this purpose, this paper experimentally explores the influence of in-flow on the strength of weld lines for a commercial polypropylene compound reinforced with glass fibers. In-flow is defined as the flow within the mold cavity, below the solidified layer, that continues after the local region of the mold cavity is filled. In particular, the comparison of the weld line strength between specimens manufactured with and without in-flow was carried out and related to the reinforcement distribution in the welding zone.
Experimental Setup Design For Processing Functionally Graded Cellular Composites In Rapid Rotational Foam Molding
This paper presents a new manufacturing process for producing functionally graded foam for rapid rotational foam molded composites (RRFM). A new experimental setup incorporates continuous foaming operation using a physical blowing agent (PBA) and a chemical blowing agent (CBA) to deliberately generate a foamed core with varying quality based on preferred direction or orientation. Carbon dioxide will be used as the PBA to produce ultrafine cellular foam. This novel process utilizes a static mixers to create a single phase solution before foam injection phase. In the co-extrusion operation, one extruder will be used for CBA-based fine cell low density foam production and the other for PBA-based ultra-low density polymeric foaming operation.
Copolyester Elastomers For Automotive Applications With Focus On Cvj Boots
Kirsten Markgraf, March 2019
Copolyester elastomers are high performance thermoplastic elastomers, based on a polyester hard segment and a polyether or aliphatic polyester soft segment. Copolyester elastomers are used to replace thermoset rubbers in CVJ (constant velocity joint) boot applications. These require thermal stability and resistance to greases. Copolyester elastomers are well known for these properties. When the surfaces of the boots come into contact with each other (i.e. at large turning angles) this can cause squeaking noises. Looking at the future, more and more electric or hybrid cars will be built. Until now the squeak noise was muffled by the combustion engine. Electric or hybrid cars require reduced noise emission in dry and humid environments. This paper provides an overview of copolyester elastomer applications for automotive with focus on CVJ boots and noise emission testing in different environments.
Designer Polymers: Additive Manufacturing Of Smart Materials As A Complement To Injection Molding
Richard Voyles, March 2019
This paper presents the idea of “designer polymers” – these are polymers that can be custom formulated to include sensing, computation, and actuation infused throughout the bulk of the material. Designer polymers are useful in the design and fabrication of smart products and we believe they will revolutionize the co-design of complex products. The co-design of smart products involves the simultaneous design of, for example, hardware and the software that executes during the functioning of the device. In our quest to develop designer materials, we have explored a variety of fabrication methods, including insert-molding and 3-D printing, or additive manufacturing.
Contribution Of Flow Instability To Tiger Stripes Of Polypropylene Copolymers
Tieqi Li, March 2019
Tiger stripes of polypropylene copolymers are studied by modeling the mold filling process as a non-isothermal two-phase flow using a level-set method. It has been shown that the Level Set method is capable of modeling the evolution of the flow field at and behind the melt front. An area of large velocity contrast between the skin layer of high shear rates and the center core of low shear rates has been observed behind the melt front under relevant injection molding conditions. The large velocity contrast appears to be a direct origin of the flow instability. The instability in terms of alternative occurrence and disappearance of the oscillatory strain rate is proposed to be a possible root cause of the tiger stripes. The comparison of the materials of different rheology suggests that shear thinning may be a useful property to mitigate the risk with the tiger stripes.
Preventing Discoloration In Thermoplastic Polyurethanes
Tad Finnegan, March 2019
Thermoplastic polyurethanes (TPU) are a versatile class of elastomeric polymers with physical properties that can be tuned to meet a wide range of demanding applications. TPU is known for its elasticity, transparency, abrasion resistance, and chemical resistance. This combination makes TPU an attractive material to replace materials such as rubber or polyvinyl chloride in many applications. However, like many polyurethanes, TPU is prone to oxidation and discoloration during processing and upon weathering. In this paper, combinations of antioxidants, process stabilizers, and light stabilizers were investigated to determine the best additive combinations to reduce the tendency of TPU to discolor.
Evaluation By On-Line Ftir Of The Kinetics Of Pp/Pa6 Blend Compatibilization With Pp-G-Mah During Extrusion
Lucivan Barros, March 2019
The on-line evaluation of the effects of process conditions variation during the extrusion process on the kinetics of compatibilization of polyamide 6 (PA6) in a matrix of polypropylene (PP) compatibilized with polypropylene grafted with maleic anhydride (PP-g-MAH) in different locations along the extruder by infrared (FTIR) spectroscopy is proposed in this work. As preliminary results and as a basis for comparing the on-line results that will be shown in the presentation the evolution of dispersion of the second phase of PA6 in the PP matrix is presented here. The area ratio of the peak of carbonyl stretching in amide present in PA6 at 1640 cm-1 standardized to the IR area of the peak at 1170 cm-1 relative to PP is applied to evaluate the evolution of dispersion along the extruder and the effect of the process condition in it. The standard deviation (s.d.) of the area ratio was used to correlate to the changes in dispersion condition when the process temperature, the feed rate and the screw speed were varied.
Mechanical Failure In Agricultural Silo Bags
Akanksha Garg, March 2019
Silo bags are used for bulk storage of grains in farmland. There are two typical modes of their failure: while being filled with grains, or due to long-term creep deformation during storage. In the past, several numerical studies have been conducted to improve the quality of grains stored in these bags by optimizing the moisture content or CO2 levels. The failure of these bags, however, especially when excessive pressure is applied during grain filling and subsequent creep during storage, is not well understood. Explicit Dynamic Solver in Abaqus (Product of Dassault Systems Simulia Corporation, USA) was used to model polymeric silo bags storing granular material under gravitational loading and pressure. The material computational model for silo bags (film) and the granular material has been developed using material subroutines, which themselves have been calibrated through in-house tensile and creep testing for the film. Numerical analysis of agricultural silo bags has been performed to understand mechanical failure in the bags during installation and usage at different temperatures.
Mineral Fiber Filled PC+ABS Blend Designed For Large Off-Line Painted Exterior Components
Marjolein Groeneweg, March 2019
A newly developed mineral fiber-reinforced PC+ABS satisfies all OEM requirements for large, painted, exterior components. It delivers a very low CLTE value, which ensures a high dimensional stability as needed for low gap designs. The low CLTE value is combined with a low density of only 1.24 g/cm3 which facilitates lightweight components and potential cost optimization. Beside the low density, the material offers very good flow properties, which not only permit thin walls but also guarantee a high degree of design freedom, even with large, long moldings. The good flow also speeds up cycle times and contributes to a cost-efficient production process. The new substrate material has proven to provide a nice class A surface of the final component after painting. The good paint adhesion meets the most stringent OEM requirements also after climate aging. Overall, the new mineral fiber-reinforced PC+ABS formulation has proven its technical fit and is a cost-efficient alternative to metal or PC+PET materials for exterior automotive applications. These improved properties of this material will help accelerate the trend to plastic exterior panels in autonomous vehicle since they allow much better pass through of various communication and lighting signals, compared to metal body panels.
Magnum Abs: The Benchmark ABS For Extrusion
Marjolein Groeneweg, March 2019
Acrylonitrile-butadiene-styrene (ABS) resins are widely used for applications such as appliances, toys, office equipment, sanitary wares, building & construction, transportation and more. Extrusion of ABS covers around 25% of the total ABS market in North America, namely through sheets, pipes, edge bands, and profiles. ABS extruded into sheets and formed into final parts, finds its way into furniture, automotive, buses, trucks, recreational and utility vehicles, sanitary applications, advertisement boards, luggage and doors. For optimum product performance and cost efficiency, the ABS resins require specific attributes. These are an excellent lot-to-lot consistency, a white and thermal stable base color, an adequate UV stability, a low amount of unmelts and a high product purity. Because sheets and edge bands are demanded in a wide range of colors, self-coloring has become a key cost driver through necessities such as color matching, UV absorbers, and optical brighteners. Limited run sizes and regrinding also lead to increased scrap and constant color adjusting. Because the surface quality of thermoformed parts is so critical, presentation of unmelts and high levels of volatile organic compounds in the resins affect aesthetics. This study discusses the attributes of ABS specifically for extrusion and thermoforming, and compares the benefits of MAGNUM™ ABS versus several emulsion ABS. It is intended to provide information to manufacturers of extrusion applications to select the most suitable ABS materials for optimum production performance and cost efficiency.
Processing And Characterization Of Microcrystalline Cellulose Reinforced Amorphous Polyamide Composites
Varun Venoor, March 2019
The primary objective of this work was to evaluate the processing and mechanical, rheological and thermal properties of a 2 and 10 weight percent loading of MCC in amorphous polyamide (APA). Modified, unmodified MCC and commercial MCC (FI-1 fibers) were investigated. Melt-blended composites of the various MCCs and amorphous polyamide were prepared by single and twin-screw extrusion, then injection molded into test specimens. Rheological properties of 2 and 10% MCC filled composites were studied using a rotational parallel plate rheometer. The mechanical behavior of all three filled polymer composites were examined by studying storage and loss modulus with frequency. Also, the influence of moisture content in neat and cellulose reinforced composites were also investigated. These results indicate the need for extensive moisture control for amorphous nylon and microcrystalline cellulose.
A Study Of Melt Temperature Of A Lab-Scale Blown Film Line And Effect Of Melt Temperature On The Film Properties
Jin Wang, March 2019
Melt temperature is an important parameter in the blown film process, as it can impact melt strength, bubble stability, crystallization/orientation, and maximum throughput. The melt temperature at the extruder discharge, blown film die exit and film bubble of a lab-scale blown film research line were measured using a hand held thermocouple and a FLIR thermal camera. The die melt temperature was 10 to 18 °C higher than the die temperature set point, but the extruder discharge melt temperature had only a small influence on it. This could be caused by the balance of shear heating in the die and cooling from the metal. Films were fabricated at high and low melt temperatures at the die and at the extruder discharge for two resins. All other process conditions such as rate, frost line height (FLH), film thickness, blow up ratio (BUR), die gap, and air ring, were kept the same to study the effect of melt temperature. Film properties, i.e., haze, dart, tear and tensile were characterized. Most properties did not show a clear trend with the melt temperatures in the range of the experiment (25 °C variation of die and 40 °C variation of extruder). The one exception was dart, which showed slightly reduced values at higher melt temperature. The results from this study provide important information for blown film process modeling.
Cavity Pressure Measurement During Injection Molding Via Ultrasonic Technology
Peng Zhao, March 2019
Cavity pressure history during the injection molding process dramatically affects the properties of the product. This study proposes a non destructive method for measuring cavity pressure by evaluating stress on the tie bars of the injection molding machine using ultrasonic technology. Both theoretical discussion and experimental results are presented in this study, and the correlation between ultrasonic signals and stress es on the tie bars are further determined by a magnetic type clamping force detector. The method is then precisely calibrated with an R squared value up to 0.99 962 in average. Following this, it is a pplied to measure the cavity pressure and proves feasible, with r elative errors within 4.3 This method can be applied to online monitoring in the injection molding process to detect parameter variations and indicate product properties. This method has th e advantage of high stability, being non destructive, online and low cost, and can be widely promoted in injection molding industries.
Thermoforming Evaluation Of Coextruded Multilayer Evoh/Ldpe Film/Foam
Claudio Souza, March 2019
A multi-layered film/foam system having 16, 32, and 64 alternating foam and film layers has been developed using multilayer coextrusion technology. The film layer was based on ethylene-vinyl alcohol (EVOH) copolymer and foam layer on low-density polyethylene (LDPE). The cellular structure was characterized by scanning electron microscopy investigating the effect of the number of layers and layer composition on the film/foam structure. The film/foam materials produced exhibited variable properties, such as density, cell size, cell density, and mechanical properties by changing the layer number and composition. The stress-strain behavior of these film/foam materials at several temperatures was examined. The stress‐strain curves obtained were referenced to understand the influence of temperature on the uniaxial deformation process. This information provides insight into the material properties and process conditions influencing thermoforming behavior and performance. The thermoformability of the film/foam materials were evaluated. Optimum forming capacity was achieved at 60ºC. These film/foam materials showed a lower reduction of thickness in the sidewalls, as well as a higher dimensional uniformity in the thermoformed product.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net