The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
In thermoplastic foaming, phase separation (i.e., bubble nucleation and growth) occurs due to a sudden change in pressure during mold filling that has significant effects on the rheology of polymer flow. An instrumented mold cavity has been designed to capture rheological measurements of the eventual two-phase gas-polymer suspensions. Experimental results for low density polyethylene (LDPE) and thermoplastic polyolefin (TPO) with two types of chemical blowing agents indicated that the rheological properties of two-phase gas-polymer suspensions were sensitive to shear rate, blowing agent concentration, melt temperature and mold temperature. The viscosity of gas-polymer suspensions was reduced in the presence of gas bubbles. A model has been proposed that yields good agreement with our experimental results for estimating the viscosity of two-phase flow in the mold cavity of the injection molding machine.
Bhavjit S. Ghumman, Zhenghong Tao, Rakshit Amba, Carol M.F. Barry, David Kazmer, May 2006
A self-regulating valve is placed between the extruder and die is to adjust the melt pressure and also reduce the amount of surging related to the screw beat in an extrusion process. The experimental results validate that there is a linear relationship between the control force and output melt pressure, and that the use of a self-regulating valve can significantly reduce the variation in output melt pressure compared to the conventional extrusion process. However, the results indicate that the specified control force and output melt pressure must be carefully selected in extrusion processes to prevent excessive increases in plastication pressure. Furthermore, the response time of the valve limits the dynamic performance of the system, and indicates the need for potential improvements in mechanical and control system designs.
S. Solomon, Y.W. Leong, Z.A. Mohd Ishak, U.S. Ishiaku, H. Hamada, May 2006
The effects of interfacial shear stress between fiber and matrix, and fiber surface morphology on the fracture toughness of carbon fiber (CF) and glass fiber (GF) reinforced PA 6 sandwich composites are investigated in this study. Both fiber length distribution measurement and single edge notch bending fracture tests were carried out. 6 configurations were produced for this study, i.e. PA 6, composites reinforced with CF (CF/PA 6), composites reinforced with GF (GF/PA 6), GF and CF blend (GF/CF/PA 6) produced via conventional injection molding techniques, whereas the sandwich moldings CFPA 6 skin/GF-PA 6 core (CFs/GFc/PA6) and GF-PA 6 skin/CF-PA 6 core (CFs/CFc/PA6) which were produced using co-injection molding. As a result of rough CF surface, coupled with its capabilities to induce transcrystallinity in the matrix, CF/PA6 have higher interfacial shear stress, fracture toughness and fracture energy values compared to GF/PA 6 composites.. CF also tends to have a very low critical fiber length compared to GF. This is very obvious as the fracture toughness values of CF/PA6 were the highest among all composites. The GF/PA6 configuration was the second lowest, while PA 6 itself recorded the lowest fracture toughness values. Substantial retention of toughness is observed by blending both CF and GF together into GF/CF/PA6. Both CFs/GFc/PA 6 and GFs/CFc/PA 6 sandwich structures show nearly similar toughness values. This is due to the fact that both sandwich composites behave like laminates, i.e. GF/PA 6 and CF/PA 6 laminates combined into a single composite. As such, the superior properties of CF were not efficiently utilized. Fracture energy was calculated on the basis of Kc and Gc relation. CF/GF/PA 6 and GFs/CFc/PA 6 dominate the highest values of fracture energy. This is again attributed to the addition of CF into the sandwich composites.
Injection molding with recycled polycarbonate (PC) and crushed FRP products was fabricated and examined on tensile, flexural and Izod impact test. The specimen of composition filled with 5wt% of FRP and modifier had highest mechanical properties. The composite had approximate equivalent tensile strength and higher Izod notched impact value than that of standard rigid PVC. Composite pipe made of this composition was manufactured by using extrusion process. The composite pipe has extreme high flexibility because in 50% diameter reduction of lateral compression test no fracture ccurred. Consequently, the composite pipe can become substitute of PVC.
Shaofu Wu, Willem DeGroot, Drew Davidock, Victor Juarez, May 2006
It is known that mechanical properties of LLDPE films depend on the length of the short chain branches. However, it is often very difficult to differentiate this effect with the effect of other variables such as comonomer distribution and molecular weight distribution using standard test methods. Furthermore, the structure property relationships for copolymers with different length alpha olefins has not been clearly established. High rate tensile, high rate single edge notch tear, and the essential work of fracture method were used in this paper to differentiate the effect of short chain branch length using several well controlled samples. The crystal morphology of the samples at different stages of deformation were analyzed using DSC, AFM, and X-ray to explain the effect of short chain branch length. It was demonstrated that the tear resistance of LLDPE thin films produced with different length alpha olefins can be differentiated using strain hardening, tear energy, or essential work of fracture at high loading rate. A hypothesis is also proposed to explain the effect of short chain branch length on film tear resistance.
Byoung-Ho Choi, Hoang Pham, Richard Fibiger, Alexander Chudnovsky, May 2006
In this study, the effect of the number and size of clusters on the fracture behavior of PP and TPO nanocomposites are investigated. The effect of the particle size distribution and injection molding flow profile are also discussed with respect to the effect of filler morphology on the tensile fracture toughness. Fracture pattern and fracture surface were examined by scanning electron microscopy (SEM). The morphological analysis of crack propagation path and the contribution of nanoparticles were studied by observing process zone formation during crack propagation. A schematic model of nanoparticle distribution in injection molded specimens is also proposed based on fractographic analysis.
Stress corrosion cracking (SCC) results from strongly coupled electro-chemical and thermo-mechanical processes, and this cracking is sensitive to material composition and morphology. There are four stages of SCC such as initiation, individual SC crack propagation, many crack interactions and clusters of crack formation, and finally crack or cluster instability and dynamic growth leading to the ultimate failure. In this paper the mechanism of SCC is investigated by the observation of SCC surface using a scanning electron microscope (SEM). Thermodynamic model of SCC propagation and statistical modeling of SCC initiation based on chemical degradation has been proposed before by the authors. The model predicts a change of the mechanisms of crack growth from chemically driven to mechanical stress control propagation. This prediction is validated by fractographic observations. It provides important information on the change of SCC propagation mechanism by the variation of micro-morphology and striation on the fracture surface. The duration of chemically driven stage of SCC and transition to stress controlled propagation depend on temperature and stress.
Utilizing the injection molding simulation, this paper illustrates a methodology of dealing with manufacturing variance occurring in molded parts. For the simulation, the manufacturing variance is deliberately induced by a small change in processing condition variables, which consequently causes a variation in the rheological properties of the polymer melt entering into cavity. By comparing the simulation results with previously published experimental results, an attempt is made to statistically validate this methodology. In doing so, the effect of different switchover methods during the injection stage is comparatively evaluated. The part weight and dimensions are chosen as the quality characteristics. This study also investigates correlations between part weight and dimensions, as well as between the predictions and the experiments of an actual molding trial.
Biopolymers are generally defined as polymers that are found in nature, derived from nature, or utilized as medical implants. Polymeric biomaterials which are utilized as medical implants are typically characterized for end-use performance as well as processability. While lactic acid is found in the human body, polylactic acid is derived from natural resources and utilized as medical implants. This paper will utilize poly(lactic acid) as an example of a biopolymer where the morphological and isomeric structure has an influence on end-use properties such as mechanical properties, biodegradability, and biocompatibility.
Walter Michaeli, E. Schmachtenberg, Martin Bussmann, Markus Brinkmann, Bernhard Renner, May 2006
Inner parts properties strongly affect the global mechanical behavior of molded semi-crystalline parts. During the last years an IKV research group tried to bridge the gap between simulation of inner properties and structural analysis. By a self-developed software to simulate inner properties arising during injection molding and programmed subroutines for Abaqus a so-called integrative simulation was realized. Results of this simulation chain will be presented and discussed focusing on a plastics pipe fitting made out of polypropylene.
Shelf life is an important quality for medical components. It is uncertain at what point physical aging affects the chemical resistance of medical components. The breakdown of chemical resistance in the polymer can result in adverse effects in the field.As a polymer ages there is usually a reduction in molecular weight, which can lead to greater susceptibility to chemical attack. The objective of this research is to attempt to draw correlations between accelerated aging at elevated temperatures and room temperature aging to better identify when molecular weight reduction and increases susceptibility to chemical attack occurs.
This paper will show how the microcellular injection molding process compares to conventional injection molding for an injection molded part with tight tolerances. A critical part from a laser printer was used as an example in the study. The part was first injection molded using the conventional injection molding process then analyzed using the microcellular injection molding process. The Moldflow® injection molding simulation software was able to accurately predict the part warpage which agreed well with the real injection molded part. The predicted part warpage in microcellular injection molding process was better than in the conventional injection molding process.
Besides a lot of positive aspects of foam injection molding (FIM), the achievable surface qualities are rather poor in many cases. Occurring silver streaks, melt eruptions and cold-displaced polymer melt areas cause more uneven and non-uniform part surfaces in comparison to conventional injection molding. That is the reason why foamed parts are often excluded as visually exposed parts. A comprehensive understanding of the effects arising during the filling phase establishes new possibilities to increase the surface qualities in foam injection molding. New research shows that different process variants of FIM such as breathing" molds gas-counterpressure structured and coated cavity surfaces can increase the surface quality effectively."
Nafaa Mekhilef, Gilberto O. Pasquariello, May 2006
The structure-rheology relationship is investigated in three polyethylenes namely high density polyethylene (HDPE), a metallocene linear low density polyethylene with no chain branching (mLLDPE) and a metallocene polyethylene containing long chain branching (mLLDPE-LCB). Shear and extensional rheology measurements were carried out in the linear viscoelastic regime and correlated to the molecular weight, molecular weight distribution and long chain branching. Shear rheology showed that HDPE exhibits a viscosity profile whereby the Newtonian behavior is not completely attained as shown by the slope of the storage modulus in the terminal region. mLLDPE was found to possess the longest and well-defined Newtonian region and the highest transition to the non-Newtonian region. In the presence of long chain branching (LCB), the terminal region is not apparent while the onset of shear thinning is decreased. Such behavior can be related to the effects of MWD and LCB and was corroborated using extensional viscosity measurements, which showed slight deviation from the LVE envelope for broader molecular weight distribution and strain hardening in the presence of long chain branching.
Soondeuk Jeung, Shanshan Wang, Kyonsuku Min, May 2006
The ionic conductivity of linear segmented thermoplastic polyurethane (TPU) in-situ reacted with alkali metal salts as well as their blends of TPU and modified polysiloxane is investigated. The relationship between ion conductivity and cationic size in TPU electrolytes is discussed with different salts. We focused on investigating two particular types of salts such as LiClO4 and KI. Differential scanning calorimeter (DSC) and Fourier transform infra-red (FTIR) spectroscopy was used to determine the interaction of salts with TPU. The temperature dependency of TPU electrolytes is also studied by using the modified LCR meter.
Walter Michaeli, Oliver Groenlund, Christoph Lettowsky, May 2006
The water injector is the centerpiece of the complete system configuration for the water injection technique. For a stable and reproducible process cycle, a well operating injector system is one of the basic demands. It is still unclear how the injector design effects the stability of the process and important part properties. Thus, different injector concepts have been developed and evaluated practically with different polymers. The first results presented in this paper suggest, that the injector orifice diameter and the ambient shape of the injector closure cap influence directly the part quality and the process stability.
Young-Mi Chung, Martin E. Weber, Musa R. Kamal, May 2006
A simple model was developed for the steady state phase of the vibration welding process using the lubrication approximation. The model predicts temperature and pressure at the interface, molten fluid film thickness, shear stress and shear rate as functions of weld pressure, amplitude, frequency, and penetration velocity. The melt viscosity was estimated, using the penetration velocity obtained from meltdown velocity, since data for melt viscosity of polyamide-6 at vibration molding conditions were not available. The model predicts temperature at the interface in a reasonable range, 7-37°C above the melting peak temperature. The overall predictions of the model are reasonable and they should be helpful in optimization of vibration welding process parameters.
Chunmeng Lu, David Grewell, Avraham Benatar, L. James Lee, May 2006
An unconventional embossing method is evaluated in which de-embossing is avoided to prevent the deformation or damage of the polymer microstructure on the substrate due to one or more of the following issues involved in hot embossing process: higher feature density, higher aspect ratio, bad surface quality and under-cuts. In this study, a PDMS mold is used to transfer a SU-8 structure to a water-soluble polymeric stamp under low pressure and low temperature, which is used as the rigid tool in the following hot embossing and can be reused by being dissolved in water, an environmentally benign solvent. This method has potential uses in the replication of high aspect ratio microstructure on polymeric materials that cannot be easily achieved using other methods.
Carbon-filled epoxy composites were developed as potential materials of bipolar plates in proton exchange membrane fuel cells (PEMFCs). The synergistic effect of combining graphite and carbon black on conductivity of composites was investigated. All composites provided much higher in-plane electrical conductivity than the Department of Energy (DOE) target value of 100 S/cm, although through-plane conductivity was measured to be about 50 S/cm. The chemical stability of these materials was checked by using acid reflux in boiling aqueous sulfuric acid solution with a pH of 2. The thermal properties of these composites was investigated through DSC and TGA.
Polystyrene nanocomposites were obtained via melt compounding, using montmorillonite modified with various surfactants. The interlayer distance, thermal stability and surface tension of the resulting organoclays were determined. Moreover, the resulting PS nanocomposites were evaluated using X-ray diffraction and thermogravimetric analysis (TGA). The mechanical and barrier properties were also determined. The results show significant differences in thermal stability, and mechanical and barrier properties of the nanocomposites depending on the composition and interfacial properties of the surfactant.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.